Lower Neuse Basin Association P.O. Box 1410 Clayton, North Carolina 27528-1410

Annual Monitoring Report 2022

Submitted By: _______, Chairman John Kiviniemi

Prepared By: Haywood M. Phthisic, III, Executive Director

Lower Neuse Basin Association Contact Information

Officers of the Lower Neuse Basin Association

Chairman -

John Kiviniemi City of Raleigh P.O. Box 590 Raleigh, N.C. 27602 919.996.6623

John.Kiviniemi@raleighnc.gov

Treasurer -

Donald Smith
Town of Cary
P.O. Box 8005
Cary, N.C. 27512 - 8005
919.469.4095
donald.smith@townofcary.org

Vice Chairman -

Charles Smithwick Contentnea MSD P. O. Box 477 Grifton, N. C. 252.413.8898

cmsd100@embarqmail.com

Secretary -

Kenneth Stevens City of Kinston 2101 Becton Farm Road Kinston, N.C. 28501 252.939.3375

Kenneth.Stevens@ci.kinston.nc.us

Associates:

Executive Director -

Haywood M. Phthisic, III P.O. Box 1410 Clayton, N.C. 27528-1410 919.796.8049

exec.director@lnba.net

Association Counsel -

Daniel F. McLawhorn 1706 St. Mary's Street Raleigh, N.C. 27608 919.612.4520

hgdunn@poynerspruill.com

Coalition Web Site Address - https://www.lnba.net

Lower Neuse Basin Association April 14, 2023

Members and Contact Information

A complete list of LNBA delegates for 2022 follows in Section I.

Monitoring Stations for 2022

A complete list of the monitoring stations with station numbers, descriptions, coordinates, county, sub basin and stream classification included in Section II. The LNBA staff visited each station during 2022.

The Agreement between the LNBA and the Division of Water Resources was renewed in 2019. The effective date was August 1, 2019 through July 31, 2024. There were several sampling stations, added, deleted, or moved to a better location for safety reasons or environmental conditions.

Quality Assurance/Quality Control Issues

Environment I reported no quality assurance or quality control issues in 2022.

Environment I reported it completed and passed proficiency testing for its satellite lab (field testing equipment) in 2022.

NCDEO-DWO did not conduct a field review and inspection in 2022.

On April 3, 2007, the Division of Water Quality suspended the collection and analysis of total recoverable metals as required by the monitoring coalitions. The metals are no longer collected as part of the LNBA MOA agreement.

Environment I's contact information and sampling methods/protocols are listed in Section III with the sampling errors and omissions for 2022.

Special Projects

The Lower Neuse Basin Association, in cooperation with its sister organization, the Neuse River Compliance Association, has continued with its partnership with Dr. Hans Pearl of the University of North Carolina at Chapel Hill, Institute of Marine Science. The two associations support the MODMON monitoring program of the Neuse River Estuary. The associations began assisting with this research in July 2006.

Suggested Changes

There are no suggested changes at this time.

Statistical Analysis of Data

Statistical analyses of the data for each monitoring station are included in Section IV.

Section I

LNBA Members and Contact Information

NPDES Permit #	LNBA Permittees Ownership and Facility	Authorized Representative and Title	County	Region	HUC (8 Digit)
NC0003417	Duke Energy Progress Lee Steam Plant	Jeffery D. Hines General Manager	Wayne	WaRO	3020201
NC0003760	CovationBio, Inc.	Shelby Are Plant Manager	Lenoir	WaRO	3020202
NC0020389	Town of Benson - Benson WWTP	Tim Robbins Public Utility Director	Johnston	RRO	3020201
NC0021253	City of Havelock - Havelock WWTP	Chris McGee City Manager	Craven	WaRO	3020204
NC0021644	Town of LaGrange - LaGrange WWTP	John Craft Town Manager	Lenoir	WaRO	3020202
NC0023906	City of Wilson - Wilson WWTP	Grant Goings City Manager	Wilson	RRO	3020203
NC0023949	City of Goldsboro - Goldsboro WWTP	Timothy M. Salmon City Manager	Wayne	WaRO	3020202
NC0024236	City of Kinston - Kinston Regional WWTF	Rhonda Barwick Director of Public Services	Lenoir	WaRO	3020202
NC0025348	City of New Bern - New Bern WWTP	Foster Hughes City Manager	Craven	WaRO	3020204
NC0025453	Town of Clayton - Little Creek WWTP	Rich Cappola Town Manager	Johnston	RRO	3020201
NC0029033	City of Raleigh - Neuse River WWTP	John Kiviniemi Assistant Utility Director	Wake	RRO	3020201
NC0029572	Town of Farmville - Farmville WWTP	David Hodgkins Town Manager	Pitt	WaRO	3020203
NC0030716	Johnston County Central Johnston County Regional WWTP	Rick J. Hester County Manager	Johnston	RRO	3020201
NC0030759	City of Raleigh - Smith Creek WWTP	John Kiviniemi Assistant Utility Director	Wake	RRO	3020201
NC0032077	Contentnea Metropolitan Sewerage District Contentnea MSD WWTP	Charles M. Smithwick, Jr. District Manager	Pitt	WaRO	3020203
NC0048879	Town of Cary - North WWTP	Jonathon Bulla North Cary Faciility Manager	Wake	RRO	3020201
NC0064050	Town of Apex - Apex WRF	Catherine Crosby Town Manager	Wake	RRO	3020201
NC0064891	Town of Kenly - Kenly Regional WWTP	Tony Sears Interim Town Manager	Johnston	RRO	3020201
NC0065102	Town of Cary - South WWTP	Jarrod Buchanan South Cary Facility Manager	Wake	RRO	3020201
NC0066516	Town of Fuquay Varina Terrible Creek WWTP	Adam Mitchell Town Manager	Wake	RRO	3020201
NC0020842	Town of Snow Hill Snow Hill WWTF	Todd Whaley Town Manager	Greene	WaRO	3020203
NC0079316	City of Raleigh - Little Creek WWTP	John Kiviniemi Assistant Utility Director	Wake	RRO	3020203
NC0084735	Johnston County Johnston County WTP	Rick J. Hester County Manager	Johnston	RRO	3020201

Section II

Monitoring Station Information

List Of Monitoring Stations

Station	Location	County	Lattitude	Lattitude Longitude Class	Class	Sub-Basin
J2230000	Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest	Wake	35.9182	-78.5348	C NSW	03020201
J2330000	Neuse River at SR 2215 (Buffalo Road) near Neuse	Wake	35.8479	-78.5302	C NSW	03020201
J3310000	Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh	Wake	35.8041	-78.6081	C NSW	03020201
13970000	Walnut Creek at SR 2551 (Barwell Road) near Raleigh	Wake	35.7493	-78.5345	C NSW	03020201
J4050000	Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh	Wake	35.7266	-78.5139	C NSW	03020201
14080000	Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale	Wake	35.7309	-78.4776	C NSW	03020201
J4110000	Marks Creek @ SR 1714 (Pitchard Road) near Archer's Lodge	Johnston	35.7062	-78.4312	C NSW	03020201
J4115000	Marks Creek @ Neuse River Trail near Archers Lodge	Johnston	35.693264	-78.438694	C NSW	03020201
J4130000	Neuse River @ SR 1700 (Covered Bridge Road) near Archer's Lodge	Johnston	35.6749	-78.4364	WS-V NSW	03020201
J4170000	Neuse River @ at NC 42E of Clayton	Johnston	35.6473	-78.4056	WS-IV NSW	03020201
J4370000	Neuse River at US 70 Business @ Smithfield	Johnston	35.5128	-78.3498	WS-IV NSW	03020201
J4414000	Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia	Wake	35.7187	-78.7527	WS-III NSW	03020201
J4500000	Swift Creek @ Indian Creek former discharge location near Garner, N.C.	Wake	35.6476	-78.6041	C NSW	03020201
J4510500	Swift Creek at SR 1525, Cornwallis Road near Clayton	Johnston	35.5999	-78.5356	C NSW	03020201
J4511000	White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.	Johnston	35.6176	-78.5281	C NSW	03020201
J4520000	Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C.	Johnston	35.5515	-78.46	C NSW	03020201
J4580000	Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston County Airport	Johnston	35.5442	-78.397	C NSW	03020201
14690000	Middle Creek @ SR 1152 (Holly Springs Road) near Holly Springs	Wake	35.6609	-78.8042	C NSW	03020201
J4868000	Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks	Wake	35.6356	-78.7279	C NSW	03020201

Thursday, April 13, 2023

Page 1 of 3

ľ	o
ŀ	N
,	Page

Station	Location	County	Lattitude	Longitude	Class	Sub-Basin
74980000	Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs	Wake	35.6091	-78.6866	C NSW	03020201
J5002000	Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson	Johnston	35.5626	-78.5756	C NSW	03020201
J5010000	Middle Creek @ NC 210 near Smithfield	Johnston	35.5075	-78.4013	C NSW	03020201
J5170000	Black Creek @ SR 1162 (Black Creek Road) near Four Oaks	Johnston	35.46925	-78.45681	C NSW	03020201
J5250000	Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill	Johnston	35.3741	-78.1962	WS-IV NSW	03020201
15390000	Hannah Creek @ SR 1158 (Allens Crossroads Drive) near Benson	Johnston	35.3868	-78.511	C NSW	03020201
J5390800	Hannah Creek @ SR 1227 (Ivey Road) near Benson	Johnston	35.4025	-78.4952	C NSW	03020201
J5410000	Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill	Johnston	35.342	-78.2162	C NSW	03020201
15500000	Falling Creek @ SR 1219 (Old Grantham Road) near Grantham	Wayne	35.3224	-78.1282	WS-IV NSW	03020201
15630000	Little River @ SR 2320, Riley Road near Zebulon	Wake	35.8375	-78.3599	HQW NSW	03020201
J5685000	Little River at Weaver Road near Bagley	Johnston	35.5791	-78.1723	-78.1723 WS-V NSW	03020201
J5750000	Little River at SR 2339 (Bagley Road) near Lowell Mill	Johnston	35.5613	-78.1594	WS-V NSW	03020201
J5790000	Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C.	Wake	35.7697	-78.7697	C NSW	03020201
15930000	Little River @ US 581 near Cherry Hospital	Wayne	35.393	-78.0258	C NSW	03020201
J6010950	Walnut Creek @ SR 1730 (Saint Johns Church Road) near Walnut Creek	Wayne	35.2817	-77.8686	C NSW	03020202
J6024000	Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs	Wayne	35.229	-77.846	C NSW	03020202
J6044400	Bear Creek at SR 1603, Washington Street near LaGrange	Lenoir	35.3137	-77.8153	C Sw NSW	03020202
J6044500	Bear Creek @ SR 1311 (Bear Creek Road) near Kinston	Lenoir	35.2489	-77.7843	WS-IV Sw NSW	03020202
J6055000	Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange	Lenoir	35.3119	-77.7313	C Sw NSW	03020202
J6150000	Neuse River @ NC 11 Bypass at Kinston	Lenoir	35.2587	-77.5835	C NSW	03020202
J6250000	Neuse River @ NC 55 near Graingers	Lenoir	35.2957	-77.4962	C NSW	03020202

Thursday, April 13, 2023

Station	Location	County	Lattitude	Lattitude Longitude	Class	Sub-Basin
J6410000	Little Creek @ NC 97 near Zebulon	Wake	35.8279	-78.3025 CNSW	C NSW	03020203
J6450000	Little Creek @ NC 39 near Zebulon	Wake	35.8125	-78.2681	C NSW	03020203
16500000	Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner	Wilson	35.7301	-78.1895	C NSW	03020203
16680000	Turkey Creek @ SR 1101 (Claude Lewis Rodd) near Middlesex	Nash	35.7519	-78.1597	C NSW	03020203
J6765000	Contentnea Creek at Willow Springs drive near Dixie	Wilson	35.6838	-77.941	C Sw NSW	03020203
0000689	Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson	Wilson	35.6429	-77.8902	C Sw NSW	03020203
J7210000	Contentnea Creek @ NC 58 near Stantonsburg	Wilson	35.5861	-77.8111	C Sw NSW	03020203
J7240000	Toisnot Swamp @ SR 1539 (Sand Pit Road) near Stantonsburg	Wilson	35.5976	-77.7947	C Sw NSW	03020203
J7325000	Nahunta Swamp @ NC 58 near Contentnea	Greene	35.5081	-77.7455	C Sw NSW	03020203
17330000	Contentnea Creek @ US 13 near Snow Hill	Greene	35.4585	-77.6753	C Sw NSW	03020203
0000692	Little Contentnea Creek @ SR 1218 (Chinquapin Road) near Farmville	Pitt	35.5881	-77.5416	C Sw NSW	03020203
J7740000	Little Contentnea Creek @ SR 1110 (HWY 903) near Scuffleton	Pitt	35.4567	-77.4854	C Sw NSW	03020203
17850000	Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp dock upstre	Craven	35.31368	-77.30287	C Sw NSW	03020202
J8870000	Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Be	Craven	35.10159	-77.03708	SB Sw NSW	03020204

Thursday, April 13, 2023

Section III

Contract Laboratory Information, Audits, MOA Revisions, and Sample Errors and Omissions

Contract Laboratory Providing All Sampling and Analysis

Environment I, Inc. (soon to be Waypoint Analytical)

Mark Oliveira, President P.O. Box 7085 114 Oakmont Dr. Greenville, N.C. 27835-7085 252.756.6208

moliveira@environment1inc.com

Environment 1, Inc. River Basin Method Codes 2022

Parameter	EPA / SM code	Rev./ date
Temp (° C)	SM 2550B	2010
DO (mg/l)	SM 4500 OG	2016
pH (su)	SM 4500 HB	2011
Conductivity (umhos/cm)	SM 2510 B	2011
Fecal Coliform	SM 9222 D	2015
Suspended Residue,		
(mg/l)	SM 2540 D	2015
Turbidity (NTU)	SM 2130 B	2011
Chlorophyll_a (ug/l)	EPA 445.0	Rev. 1.2 - 1997
NH3_N (mg/l)	EPA 350.1	Rev. 2.0 - 1993
TKN_N (mg/l)	EPA 351.2	Rev. 2.0 - 1993
NO2_NO3_N (mg/l)	EPA 353.2	Rev. 2.0 - 1993
TP (mg/l)	EPA 365.4	Rev. 2.0 - 1974

LABORATORY CERTIFICATION BRANCH **DIVISION OF WATER RESOURCES**

In accordance with the provisions of N.C.G.S. 143-215.3 (a) (1), 143-215.3 (a)(10) and NCAC 2H.0800:

Environment 1, Inc.

Is hereby certified to perform environmental analysis as listed on Attachment I and report monitoring data to DEQ for compliance with NPDES effluent, surface water, groundwater, and pretreatment regulations.

By reference 15A NCAC 2H.0800 is made a part of this certificate.

This certificate does not guarantee validity of data generated, but indicates the methodology, equipment, quality control procedures, records, and proficiency of the laboratory have been examined and found to be acceptable.

This certificate shall be valid until

Certificate No. 10

Todd Crawford

Certified Parameters Listing

Environment 1, Inc. 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

12/31/2021 10/13/2021 1/1/2022 Date of Last Amendment: Certificate Number: Expiration Date: Effective Date:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

NORGANIC

ALKALINITY

3ACTERIA - COLIFORM FECAL SM 2320 B-2011 (Aqueous)

SM 9221 E-2014 (MPN) (Aqueous)

SM 9221 E-2014 (MPN) (Biosolids) SM 9222 D-2015 (MF) (Aqueous)

(NO3 + NO2 EPA 353.2, Rev. 2.0, 1993) - (NO2 EPA 353.2, Rev. 2.0, 1993) (Aqueous)

EPA 353.2, Rev. 2.0, 1993 (Aqueous)

NITROGEN, TOTAL KJELDAHL

EPA 353.2, Rev. 2.0, 1993 (Aqueous)

NITROGEN, NITRITE

NITROGEN, NO3 + NO2

EPA 351.2, Rev. 2.0, 1993 (Aqueous)

EPA 350.1, Rev. 2.0, 1993 (Aqueous)

NITROGEN, NITRATE

HARDNESS TOTAL - WET CHEM

SM 2340 C-2011 (Aqueous)

NITROGEN, AMMONIA

SM 4500 F⁻ C-2011 (Aqueous)

SACTERIA - COLIFORM TOTAL

SM 9222 B-2015 (MF) (Aqueous)

SM 9221 B-2014 (MPN) (Aqueous)

BACTERIA - ENTEROCOCCI

IDEXX Enterolert® (MPN) (Aqueous)

SM 5210 B-2016 (Aqueous)

SM 5210 B-2016 (Aqueous) CBOD

CHLORIDE

SM 4500 Cl B-2011 (Aqueous) CHLOROPHYLL a

SM 5310 C-2014 (UV Oxidation) (Aqueous)

SM 4500 H+B-2011 (Aqueous)

SM 4500 P E-2011 (Aqueous)

PHOSPHATE, ORTHO

RESIDUE, DISSOLVED 180 C

SM 2540 C-2015 (Aqueous)

ASTM D5907-13 (Aqueous)

RESIDUE, SETTLEABLE

SM 2540 F-2015 (Aqueous)

RESIDUE, SUSPENDED

EPA 365.4, 1974 (Aqueous)

PHOSPHORUS, TOTAL

SM 5310 C-2014 (UV Oxidation) (Aqueous)

ORGANIC CARBON, TOTAL

ORGANIC CARBON, DISSOLVED

EPA 1664 Rev. B (Aqueous)

OIL & GREASE

EPA 445.0, Rev. 1.2 (Fluorometric) (Aqueous)

Hach 8000 (Aqueous) COLOR, ADMI

SM 2120 F-2011 (ADMI) (Aqueous)

COLOR, PC

SM 2120 B-2011 (PtCo) (Aqueous)

CONDUCTIVITY

SM 2510 B-2011 (Aqueous) CYANIDE

SM 4500 CN E-2016 (Total) (Aqueous)

SM 4500 CN E-2016 (Total) (Non-Aqueous)

DISSOLVED OXYGEN

SM 4500 O G-2016 (Aqueous)

*LUORIDE

RESIDUE, TOTAL

SM 2540 B-2015 (Aqueous)

SM 2540 D-2015 (Aqueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalities and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

Certified Parameters Listing

Greenville, NC 27858 Environment 1, Inc. 114 Oakmont Dr. Lab Name: Address:

Date of Last Amendment: Expiration Date: Effective Date:

Certificate Number:

12/31/2021 10/13/2021

1/1/2022

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SM 2540 G-2015 (Non-Aqueous)	CADMIUM
SALINITY	SM 3113 B-2010 (Aqueous)
SM 2520 B-2011 (Aqueous)	SM 3113 B-2010 (Non-Aqueous)
SULFATE	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
SM 4500 SO4² E-2011 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
SULFIDE	SW-846 6020 B (Aqueous)
SM 4500 S ²⁻ D-2011 (Aqueous)	CALCIUM
TEMPERATURE	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
SM 2550 B-2010 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)
TURBIDITY	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
SM 2130 B-2011 (Aqueous)	CHROMIUM TOTAL
METAL	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
ALUMINUM	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	SW-846 6020 B (Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	COBALT
SW-846 6020 B (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
ANTIMONY	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
SM 3113 B-2010 (Aqueous)	SW-846 6020 B (Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	COPPER
SW-846 6020 B (Aqueous)	SM 3111 B-2011 (Aqueous)
ARSENIC	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
SM 3113 B-2010 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)
SM 3113 B-2010 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)
SW-846 6020 B (Aqueous)	IRON
BARIUM	SM 3111 B-2011 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)
SW-846 6020 B (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
BERYLLIUM	SW-846 6020 B (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	LEAD

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

SM 3113 B-2010 (Non-Aqueous)

SM 3113 B-2010 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

Certified Parameters Listing

Environment 1, Inc. 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

12/31/2021 10/13/2021 Date of Last Amendment: Certificate Number: Expiration Date: Effective Date:

1/1/2022

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below

CERTIFIED PARAMETERS

EPA 200.8, Rev. 5.4, 1994 (Aqueous) SM 3113 B-2010 (Non-Aqueous) SW-846 6020 B (Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous) SW-846 6020 B (Aqueous)

SM 3113 B-2010 (Aqueous)

SILVER

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

SM 3111 B-2011 (Aqueous)

MAGNESIUM

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

MERCURY

EPA 245.1, Rev. 3.0, 1994 (Aqueous)

SW-846 7471 B (Non-Aqueous)

EPA 1631 E (Aqueous) MOLYBDENUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

SM 3111 B-2011 (Aqueous)

MANGANESE

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

SODIUM

SM 3111 B-2011 (Aqueous)

SM 3111 B-2011 (Non-Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

THALLIUM

EPA 279.2, 1978 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

NCKEL

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

OTASSIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SM 3113 B-2010 (Aqueous)

SELENIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

SM 3111 B-2011 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

VANADIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

SM 3111 B-2011 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

JRGANIC

erification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalities and/or decertification for infractions

Certified Parameters Listing

Environment 1, Inc. Lab Name:

114 Oakmont Dr.

Address:

Greenville, NC 27858

Date of Last Amendment: Expiration Date: Effective Date:

Certificate Number:

12/31/2021 10/13/2021

1/1/2022 9

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

BASE NEUTRAL/ACID, ORGANICS

EPA 625.1 (Aqueous)

SW-846 8270 E (Aqueous)

CHLORINATED ACID HERBICIDES

SW-846 8151 A (Aqueous)

PESTICIDES, ORGANOCHLORINE

SW-846 8081 B (Aqueous)

PURGEABLE, AROMATICS

SM 6200 C-2011 (Aqueous) EPA 602 (Aqueous)

PURGEABLE, HALOCARBONS

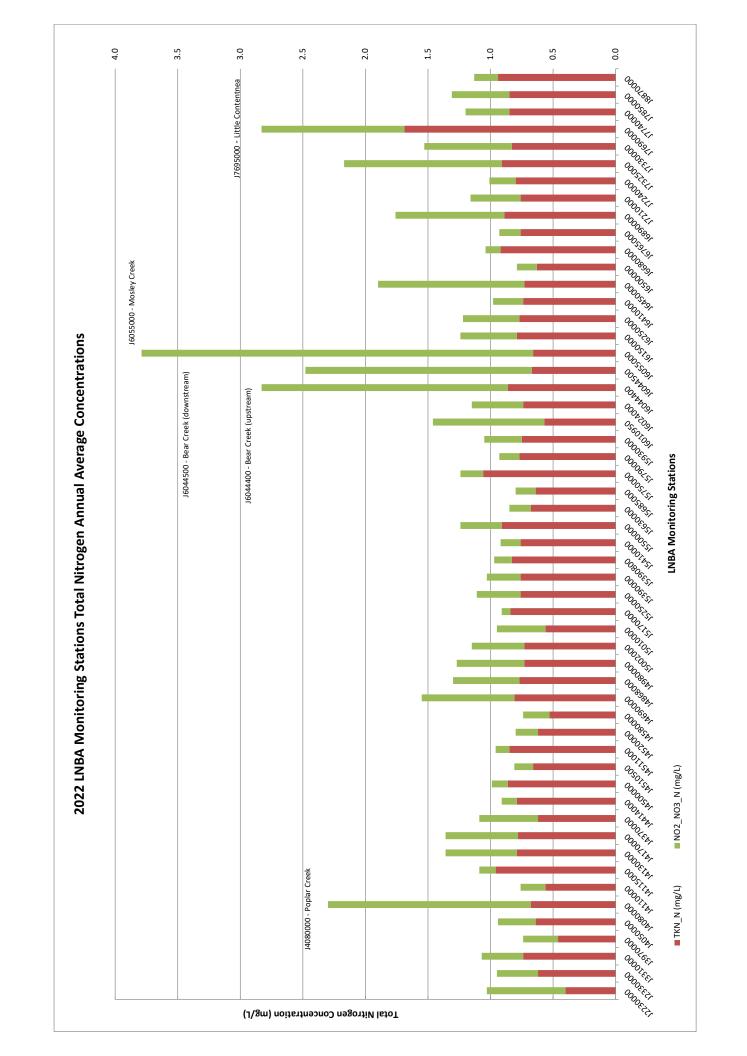
SM 6200 C-2011 (Aqueous)

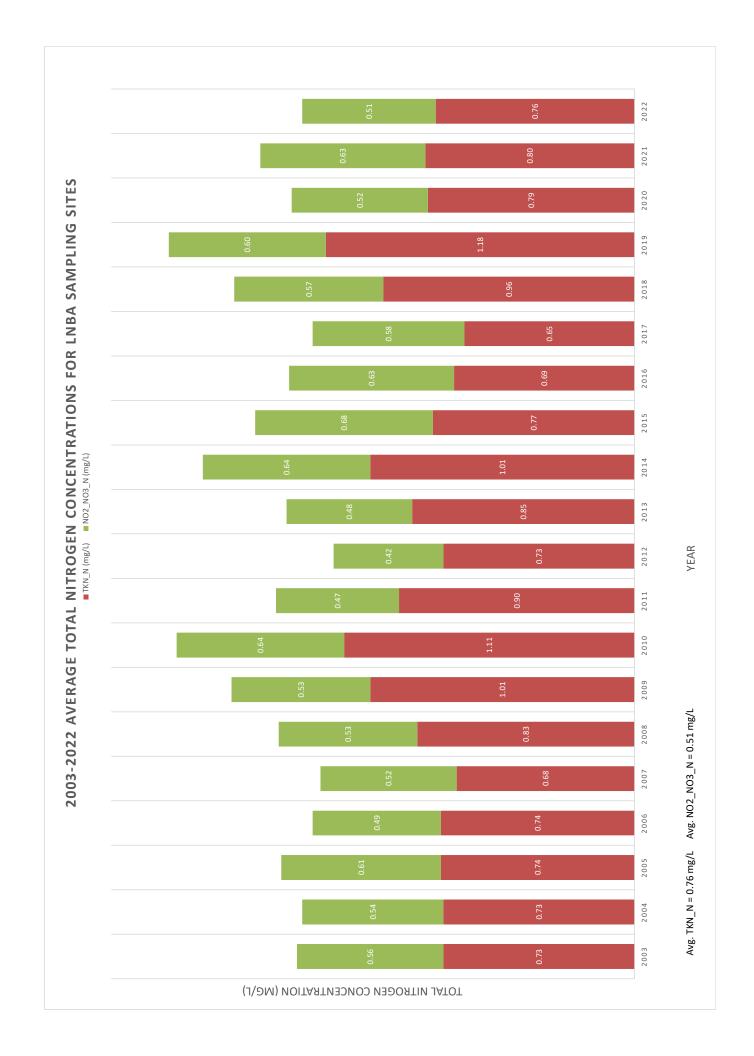
PURGEABLE, ORGANICS

EPA 624.1 (Aqueous)

SW-846 8260 D (Aqueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.


LNBA Sample Errors/Omissions for 2022


Date: 4/14/2023

May, 2022		
J2230000	5/4/2022	Unable to access- stream nearly dry
J4080000	5/16/2022	Unable to access- stream nearly dry
June, 2022		
J2230000	6/8/2022	Unable to access- stream nearly dry
J2230000	6/22/2022	Unable to access- stream nearly dry
J4080000	6/8/2022	Unable to access- stream nearly dry
J4690000	6/6/2022	Unable to access - construction
J4690000	6/23/2022	Unable to access - construction
J5390000	6/23/2022	Unable to Collect- Disconnected Stream
July, 2022		
J2230000	7/6/2022	Unable to access- stream nearly dry
J4080000	7/6/2022	Unable to access- stream nearly dry
J4110000	7/6/2022	Unable to access- stream nearly dry
J6055000	7/13/2022	Unable to access- stream nearly dry
J7850000	7/13/2022	Unable to access- road closed
August, 2022		
J4080000	8/15/2022	Unable to access- stream nearly dry
September, 2022		
J4080000	9/15/2022	Unable to access- stream nearly dry
J4690000	9/12/2022	Unable to access- road closed
J4690000	9/22/2022	Unable to access- road closed
November, 2022		
J4080000	11/28/2022	Unable to access- stream nearly dry
J4690000	11/7/2022	Unable to access- road closed
December, 2022		
J4080000	12/20/2022	Unable to access- stream nearly dry

Section IV

Statistical Analysis of Sampling Data

Station J2230000 Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest *Stream Class*: C NSW

County: Wake **Sub-Basin:** 03020201 *Lattitude:* 35.9182 **Longitude:** -78.5348

county. Wake	200	o Busin. c	,0020201	2.		102 20118	10.00
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	14	N/A	N/A	N/A	5.3	27.1	17.2
DO (mg/l)	14	N/A	4	0	6.9	12.1	9.2
*** pH (SU)	14	N/A	6 to 9	0	6.9	7.4	N/A
Conductivity (umhos/cm)	14	0	N/A	N/A	88	149	114
** Fecal Coliform (/100 mls)	11	N/A	400	5	23	1,200	324
Suspended Residue (mg/l)	11	1	N/A	N/A	2.5	27.0	9.3
Turbidity (NTU)	11	N/A	50	0	4.7	45.0	20.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	1	N/A	N/A	0.02	0.24	0.09
TKN_N (mg/l)	11	0	N/A	N/A	0.22	0.75	0.40
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.28	0.98	0.63
TP (mg/l)	11	0	N/A	N/A	0.03	0.20	0.08
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J2330000 Stream Class: CNSW Neuse River at SR 2215 (Buffalo Road) near Neuse

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8479 **Longitude:** -78.5302

County. Wake	Su	v-Dusin. 0	13020201	L	ишине. 55.0	HIS Long	<i>iiiiie10.55</i>
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.6	29.4	19.8
DO (mg/l)	17	N/A	4	0	5.4	11.7	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.6	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	85	128	114
** Fecal Coliform (/100 mls)	12	N/A	400	1	16	846	103
Suspended Residue (mg/l)	12	1	N/A	N/A	2.8	34.0	10.8
Turbidity (NTU)	12	N/A	50	1	5.2	55.0	16.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.38	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.28	0.90	0.62
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.18	0.55	0.33
TP (mg/l)	12	1	N/A	N/A	0.02	0.23	0.08
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3310000 Stream Class: CNSW Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh

Sub-Basin: 03020201 County: Wake **Lattitude:** 35.8041 **Longitude:** -78.6081

County. Wake	Su	v-Dusin.	J302020 I	L	инине. 55.0	bo41 Long	ише10.00
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.4	28.5	19.1
DO (mg/l)	17	N/A	4	0	5.5	11.8	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.9	7.5	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	99	327	203
** Fecal Coliform (/100 mls)	12	N/A	400	7	62	2,100	370
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	81.0	12.1
Turbidity (NTU)	12	N/A	50	1	3.9	60.0	17.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.14	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.32	1.20	0.74
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.08	0.54	0.33
TP (mg/l)	12	1	N/A	N/A	0.02	0.22	0.08
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3970000 Stream Class: CNSW Walnut Creek at SR 2551 (Barwell Road) near Raleigh

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.7493 **Longitude:** -78.5345

County. Wake	Su	v-Dusin. C	J302020 I	Luminue. 55.1495 Longitude16.55				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.8	26.9	18.3	
DO (mg/l)	17	N/A	4	0	6.3	11.9	8.8	
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	89	175	140	
** Fecal Coliform (/100 mls)	12	N/A	400	5	26	3,700	290	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.6	18.0	6.5	
Turbidity (NTU)	12	N/A	50	0	5.5	37.0	15.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.11	0.07	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	0.72	0.46	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.16	0.60	0.28	
TP (mg/l)	12	2	N/A	N/A	0.02	0.11	0.06	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4050000 Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh *Stream Class:* C NSW

Longitude: -78.5139 **Sub-Basin:** 03020201 *Lattitude*: 35.7266 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7266 Longitude: -78.8			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.6	28.7	19.3
DO (mg/l)	17	N/A	4	0	6.2	12.1	8.5
*** pH (SU)	17	N/A	6 to 9	0	7.0	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	98	166	128
** Fecal Coliform (/100 mls)	12	N/A	400	3	44	1,800	165
Suspended Residue (mg/l)	12	0	N/A	N/A	2.6	76.0	16.7
Turbidity (NTU)	12	N/A	50	1	4.8	80.0	20.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.16	0.08
TKN_N (mg/l)	12	0	N/A	N/A	0.21	1.29	0.64
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.19	0.46	0.30
TP (mg/l)	12	3	N/A	N/A	0.02	0.33	0.08
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4080000 Stream Class: CNSW Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale **Longitude:** -78.4776 **Sub-Basin:** 03020201 *Lattitude*: 35.7309 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7309 Longitude.			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	13	N/A	N/A	N/A	6.4	24.0	17.5
DO (mg/l)	13	N/A	4	0	7.1	11.1	9.1
*** pH (SU)	13	N/A	6 to 9	0	6.9	7.2	N/A
Conductivity (umhos/cm)	13	0	N/A	N/A	107	204	150
** Fecal Coliform (/100 mls)	7	N/A	400	3	190	800	403
Suspended Residue (mg/l)	6	0	N/A	N/A	2.8	14.0	9.7
Turbidity (NTU)	6	N/A	50	0	3.7	18.0	11.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	6	1	N/A	N/A	0.02	0.28	0.15
TKN_N (mg/l)	6	0	N/A	N/A	0.37	1.51	0.68
NO2_NO3_N (mg/l)	6	0	N/A	N/A	0.86	2.43	1.62
TP (mg/l)	6	0	N/A	N/A	0.12	0.42	0.23
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4110000 Marks Creek @ SR 1714 (Pitchard Road) near Archer's Lodge Stream Class: C NSW County: Johnston Sub-Rasin: 03020201 Lattitude: 35 7062

County: Johnston	Su	b-Basin: 0	3020201	La	attitude: 35.7	062 <i>Long</i>	Longitude: -78.4312	
				N >Ref				
	N	N <rl< td=""><td>Ref</td><td>or N< Ref</td><td>Minimum</td><td>Maximum</td><td>* Average</td></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	14	N/A	N/A	N/A	4.4	27.4	18.6	
DO (mg/l)	14	N/A	4	0	6.0	12.3	8.5	
*** pH (SU)	14	N/A	6 to 9	0	6.8	7.3	N/A	
Conductivity (umhos/cm)	14	0	N/A	N/A	76	129	88	
** Fecal Coliform (/100 mls)	10	N/A	400	5	56	964	372	
Suspended Residue (mg/l)	10	1	N/A	N/A	2.5	21.0	8.4	
Turbidity (NTU)	10	N/A	50	0	5.6	35.0	15.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	10	0	N/A	N/A	0.03	0.10	0.07	
TKN_N (mg/l)	10	1	N/A	N/A	0.20	0.85	0.56	
NO2_NO3_N (mg/l)	10	1	N/A	N/A	0.02	0.35	0.20	
TP (mg/l)	10	0	N/A	N/A	0.03	0.08	0.05	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4115000 Stream Class: CNSW Marks Creek @ Neuse River Trail near Archers Lodge

Lattitude: 35.693264 Longitude: -78.43869 County: Johnston **Sub-Basin:** 03020201

County. Johnston	Sub-Busin. 03020201			Luniume. 33.093204 Longitume70.43				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	2	N/A	N/A	N/A	4.1	10.5	7.3	
DO (mg/l)	2	N/A	4	0	10.6	12.5	11.6	
*** pH (SU)	2	N/A	6 to 9	0	7.1	7.2	N/A	
Conductivity (umhos/cm)	2	0	N/A	N/A	85	92	89	
** Fecal Coliform (/100 mls)	2	N/A	400	0	210	370	279	
Suspended Residue (mg/l)	2	0	N/A	N/A	10.0	10.0	10.0	
Turbidity (NTU)	2	N/A	50	0	13.0	14.0	13.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	2	0	N/A	N/A	0.09	0.11	0.10	
TKN_N (mg/l)	2	0	N/A	N/A	0.81	1.10	0.96	
NO2_NO3_N (mg/l)	2	0	N/A	N/A	0.09	0.17	0.13	
TP (mg/l)	2	0	N/A	N/A	0.08	0.09	0.09	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4130000 Stream Class: WS-V NSW Neuse River @ SR 1700 (Covered Bridge Road) near Archer's

Sub-Basin: 03020201 County: Johnston **Lattitude:** 35.6749 Longitude: -78.4364

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.9	27.9	19.5
DO (mg/l)	17	N/A	4	1	1.5	11.2	7.9
*** pH (SU)	17	N/A	6 to 9	0	6.8	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	102	279	208
** Fecal Coliform (/100 mls)	12	N/A	400	2	38	2,200	156
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	65.0	18.0
Turbidity (NTU)	12	N/A	50	1	3.9	90.0	22.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.43	0.12
TKN_N (mg/l)	12	0	N/A	N/A	0.30	1.07	0.70
NO2_NO3_N (mg/l)	12	0	10	0	0.30	0.79	0.57
TP (mg/l)	12	0	N/A	N/A	0.07	0.83	0.31
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4170000 Neuse River @ at NC 42E of Clayton Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude:** 35.6473 County: Johnston **Longitude:** -78.4056

County. Johnston	Su	v-Dusin.	J302020 I	Luminue. 55.0475 Longitude76.46				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.9	28.3	19.4	
DO (mg/l)	17	N/A	4	0	6.0	11.4	8.0	
*** pH (SU)	17	N/A	6 to 9	0	6.8	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	102	281	214	
** Fecal Coliform (/100 mls)	12	N/A	400	2	58	2,500	208	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	98.0	18.0	
Turbidity (NTU)	12	N/A	50	1	3.4	90.0	23.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.12	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.26	1.40	0.78	
NO2_NO3_N (mg/l)	12	0	10	0	0.33	0.83	0.58	
TP (mg/l)	12	0	N/A	N/A	0.07	0.81	0.26	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4370000 Stream Class: WS-IV NSW Neuse River at US 70 Business @ Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5128 County: Johnston **Longitude:** -78.3498

County. Johnston	Sub-Busin. 03020201			Luttitute. 55.5120 Longitute76.54				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.7	28.4	20.4	
DO (mg/l)	17	N/A	4	0	5.5	11.2	8.0	
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	121	276	206	
** Fecal Coliform (/100 mls)	12	N/A	400	2	43	530	177	
Suspended Residue (mg/l)	12	0	N/A	N/A	6.0	57.0	20.0	
Turbidity (NTU)	12	N/A	50	0	6.7	50.0	21.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.14	0.07	
TKN_N (mg/l)	12	0	N/A	N/A	0.43	0.88	0.62	
NO2_NO3_N (mg/l)	12	0	10	0	0.10	0.68	0.47	
TP (mg/l)	12	0	N/A	N/A	0.03	0.70	0.20	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4414000 Stream Class: WS-III NSW Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia

Longitude: -78.7527 **Sub-Basin:** 03020201 *Lattitude*: 35 7187 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7187 La			ngitude: - 78.75		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	5.7	27.3	18.5		
DO (mg/l)	17	N/A	4	1	3.3	12.2	7.5		
*** pH (SU)	17	N/A	6 to 9	1	6.0	9.3	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	75	194	118		
** Fecal Coliform (/100 mls)	12	N/A	400	4	58	1,000	236		
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	18.0	6.1		
Turbidity (NTU)	12	N/A	50	0	5.1	40.0	12.5		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.16	0.08		
TKN_N (mg/l)	12	0	N/A	N/A	0.36	1.20	0.79		
NO2_NO3_N (mg/l)	12	2	10	0	0.02	0.26	0.12		
TP (mg/l)	12	1	N/A	N/A	0.02	0.21	0.08		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	25	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	200	0					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4500000 Stream Class: CNSW Swift Creek @ Indian Creek former discharge location near

Garner, N.C.

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6476 **Longitude:** -78.6041

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.0	27.3	19.5
DO (mg/l)	17	N/A	4	2	1.0	11.8	6.3
*** pH (SU)	17	N/A	6 to 9	2	5.1	7.5	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	69	149	94
** Fecal Coliform (/100 mls)	12	N/A	400	3	40	1,400	160
Suspended Residue (mg/l)	12	0	N/A	N/A	6.5	123.0	35.5
Turbidity (NTU)	12	N/A	50	0	11.0	50.0	26.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.16	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.55	1.55	0.86
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.24	0.13
TP (mg/l)	12	0	N/A	N/A	0.04	0.09	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4510500 Stream Class: CNSW Swift Creek at SR 1525, Cornwallis Road near Clayton

Lattitude: 35.5999 County: Johnston **Sub-Basin:** 03020201 Longitude: -78.5356

County. Johnston	Sub-Busin. 03020201			Lumune. 55.5999 Longmune76.5				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.8	26.6	19.2	
DO (mg/l)	17	N/A	4	0	6.0	12.1	8.0	
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.6	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	61	108	92	
** Fecal Coliform (/100 mls)	12	N/A	400	1	10	709	117	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	21.0	9.1	
Turbidity (NTU)	12	N/A	50	0	8.5	50.0	17.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.13	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.43	0.88	0.66	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.03	0.27	0.15	
TP (mg/l)	12	1	N/A	N/A	0.02	0.08	0.05	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4511000 Stream Class: CNSW White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.6176 **Longitude:** -78.5281

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.6176 Longitude: -78.52				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.4	29.0	20.7	
DO (mg/l)	17	N/A	4	2	2.2	11.1	6.9	
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.6	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	50	102	76	
** Fecal Coliform (/100 mls)	12	N/A	400	2	5	2,500	68	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.7	31.0	10.7	
Turbidity (NTU)	12	N/A	50	1	7.3	65.0	21.1	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.16	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.34	1.41	0.85	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.29	0.11	
TP (mg/l)	12	0	N/A	N/A	0.04	0.15	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4520000 Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C. Stream Class: C NSW

Longitude: -78.46 County: Johnston Sub-Rasin: 03020201 Lattitude: 35 5515

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5515 Long			itude: -78.46
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.1	26.3	18.8
DO (mg/l)	17	N/A	4	0	5.3	11.4	8.1
*** pH (SU)	17	N/A	6 to 9	0	6.7	8.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	57	120	91
** Fecal Coliform (/100 mls)	12	N/A	400	2	20	2,500	155
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	40.0	8.9
Turbidity (NTU)	12	N/A	50	1	5.7	70.0	17.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.12	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.44	0.92	0.62
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.36	0.18
TP (mg/l)	12	1	N/A	N/A	0.02	0.11	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4580000 Stream Class: CNSW Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston

County Airport

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5442 Longitude: -78.397

	3 .7	N.DI	D 4	N>Ref or	36		
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.6	26.6	18.6
DO (mg/l)	17	N/A	4	0	5.6	12.4	8.2
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	60	230	100
** Fecal Coliform (/100 mls)	12	N/A	400	0	50	350	161
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	24.0	5.9
Turbidity (NTU)	12	N/A	50	0	5.2	35.0	11.7
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.11	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.22	0.79	0.53
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.34	0.21
TP (mg/l)	12	3	N/A	N/A	0.02	0.35	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4690000 Stream Class: CNSW Middle Creek @ SR 1152 (Holly Springs Road) near Holly

Sub-Basin: 03020201 County: Wake **Lattitude:** 35.6609 **Longitude:** -78.8042

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	12	N/A	N/A	N/A	6.1	25.7	17.2
DO (mg/l)	12	N/A	4	0	7.3	12.1	9.2
*** pH (SU)	12	N/A	6 to 9	0	6.3	7.9	N/A
Conductivity (umhos/cm)	12	0	N/A	N/A	149	321	231
** Fecal Coliform (/100 mls)	9	N/A	400	3	56	3,200	332
Suspended Residue (mg/l)	9	0	N/A	N/A	3.1	11.0	6.3
Turbidity (NTU)	9	N/A	50	0	5.7	28.0	14.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	9	1	N/A	N/A	0.02	0.30	0.11
TKN_N (mg/l)	9	0	N/A	N/A	0.56	1.30	0.81
NO2_NO3_N (mg/l)	9	0	N/A	N/A	0.43	1.08	0.74
TP (mg/l)	9	0	N/A	N/A	0.14	1.09	0.30
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4868000 Stream Class: CNSW Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks

Longitude: -78.7279 County: Wake Sub-Rasin: 03020201 Lattitude: 35 6356

County: Wake	Sub-Basin: 03020201			Lattitude: 35.6356 Long			gitude: -78.72		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	7.8	27.2	19.9		
DO (mg/l)	17	N/A	4	0	6.0	11.3	7.7		
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.7	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	133	423	251		
** Fecal Coliform (/100 mls)	12	N/A	400	4	52	3,600	279		
Suspended Residue (mg/l)	12	0	N/A	N/A	4.5	30.0	11.8		
Turbidity (NTU)	12	N/A	50	0	5.9	37.0	16.5		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.16	0.09		
TKN_N (mg/l)	12	0	N/A	N/A	0.51	1.18	0.77		
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.22	0.90	0.53		
TP (mg/l)	12	1	N/A	N/A	0.02	0.56	0.13		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	88	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	N/A	N/A					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4980000

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6091 **Longitude:** -78.6866

County: Wake	Sub-Busin: 03020201			Lattitude: 35.6091 Longitude: -78.68				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.2	26.6	19.2	
DO (mg/l)	17	N/A	4	0	7.1	12.0	8.3	
*** pH (SU)	17	N/A	6 to 9	1	5.5	8.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	164	432	250	
** Fecal Coliform (/100 mls)	12	N/A	400	5	62	2,700	336	
Suspended Residue (mg/l)	12	0	N/A	N/A	8.0	39.0	17.8	
Turbidity (NTU)	12	N/A	50	1	7.4	55.0	21.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.14	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.44	1.25	0.73	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.35	0.84	0.54	
TP (mg/l)	12	0	N/A	N/A	0.04	0.53	0.16	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5002000 Stream Class: CNSW Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson Longitude: -78.5756 County: Johnston Sub-Rasin: 03020201 Lattitude: 35 5626

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5626 Longitude:			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.3	26.5	18.9
DO (mg/l)	17	N/A	4	0	6.2	12.1	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.6	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	107	368	200
** Fecal Coliform (/100 mls)	12	N/A	400	2	28	2,200	193
Suspended Residue (mg/l)	12	0	N/A	N/A	4.9	53.0	16.3
Turbidity (NTU)	12	N/A	50	1	4.8	70.0	20.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.14	0.08
TKN_N (mg/l)	12	0	N/A	N/A	0.39	1.16	0.73
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.15	0.72	0.42
TP (mg/l)	12	0	N/A	N/A	0.06	0.21	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5010000 Stream Class: CNSW Middle Creek @ NC 210 near Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5075 **Longitude:** -78.4013 County: Johnston

Country: Commotion	211	o Busine o	.0020201	2.		20118	70.10
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	5.5	25.8	18.3
DO (mg/l)	17	N/A	4	0	5.2	12.1	8.3
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	82	334	182
** Fecal Coliform (/100 mls)	12	N/A	400	1	66	746	193
Suspended Residue (mg/l)	12	1	400 N/A	N/A	2.5	22.0	9.2
Turbidity (NTU)	12	N/A	50	0	6.3	38.0	16.3
	0	0	40	0	0.3	30.0	10.3
Chlorophyll-a (ug/l)		0	N/A	N/A	0.04	0.17	0.09
NH3_N (mg/l)	12						
TKN_N (mg/l)	12	0	N/A	N/A	0.25	0.75	0.56
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.12	0.57	0.39
TP (mg/l)	12	2	N/A	N/A	0.02	0.45	0.13
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5170000 Stream Class: CNSW Black Creek @ SR 1162 (Black Creek Road) near Four Oaks

Sub-Basin: 03020201 County: Johnston *Lattitude:* 35.46925 **Longitude:** -78.45681

County. Johnston	Su	v-Dusin.	J302020 I	Luttude: 55.40925 Longitude: -76.456				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.8	27.1	18.7	
DO (mg/l)	17	N/A	4	5	1.4	11.4	6.2	
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.1	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	67	99	83	
** Fecal Coliform (/100 mls)	12	N/A	400	0	8	390	79	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.9	12.0	5.5	
Turbidity (NTU)	12	N/A	50	0	7.0	17.0	11.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.42	0.13	
TKN_N (mg/l)	12	0	N/A	N/A	0.42	1.53	0.84	
NO2_NO3_N (mg/l)	12	2	N/A	N/A	0.02	0.22	0.07	
TP (mg/l)	12	3	N/A	N/A	0.02	0.11	0.06	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5250000 Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude:** 35.3741 **Longitude:** -78.1962 County: Johnston

County: Johnston	Sub-Basin: 03020201			L	uttituae: 35.3	3741 Long	Longituae: -78.196	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.7	29.4	20.5	
DO (mg/l)	17	N/A	4	0	5.6	11.5	7.9	
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	122	282	189	
** Fecal Coliform (/100 mls)	12	N/A	400	1	42	655	149	
Suspended Residue (mg/l)	12	0	N/A	N/A	13.0	62.0	31.0	
Turbidity (NTU)	12	N/A	50	0	6.5	45.0	26.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.10	0.06	
TKN_N (mg/l)	12	0	N/A	N/A	0.47	1.29	0.76	
NO2_NO3_N (mg/l)	12	0	10	0	0.10	0.45	0.35	
TP (mg/l)	12	0	N/A	N/A	0.06	0.47	0.20	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390000 Stream Class: CNSW Hannah Creek @ SR 1158 (Allens Crossroads Drive) near

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.3868 Longitude: -78.511

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	6.3	25.3	17.6
DO (mg/l)	16	N/A	4	7	0.6	11.1	5.4
*** pH (SU)	16	N/A	6 to 9	8	4.9	7.1	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	81	146	113
** Fecal Coliform (/100 mls)	12	N/A	400	1	2	430	70
Suspended Residue (mg/l)	12	2		N/A	2.5	26.0	8.6
•	12	N/A	N/A 50	0	5.9	35.0	15.2
Turbidity (NTU)	0	0	40	0	5.9	35.0	15.2
Chlorophyll-a (ug/l)					0.00	4.40	0.05
NH3_N (mg/l)	12	0	N/A	N/A	0.08	1.18	0.25
TKN_N (mg/l)	12	0	N/A	N/A	0.30	1.87	0.76
NO2_NO3_N (mg/l)	12	3	N/A	N/A	0.02	1.34	0.27
TP (mg/l)	12	1	N/A	N/A	0.02	0.17	0.05
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390800 Hannah Creek @ SR 1227 (Ivey Road) near Benson Stream Class: CNSW

Sub-Basin: 03020201 **Lattitude:** 35.4025 County: Johnston **Longitude:** -78.4952

County. Johnston	Sub-Dusin. 03020201			Luttitude. 55.4025 Longitude76.48				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.2	25.5	18.4	
DO (mg/l)	17	N/A	4	9	1.0	11.0	4.9	
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	120	258	164	
** Fecal Coliform (/100 mls)	12	N/A	400	0	36	310	84	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.0	16.0	7.6	
Turbidity (NTU)	12	N/A	50	0	8.2	24.0	13.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.15	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.52	1.35	0.83	
NO2_NO3_N (mg/l)	12	4	N/A	N/A	0.02	0.55	0.14	
TP (mg/l)	12	0	N/A	N/A	0.07	0.62	0.26	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5410000 Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill Stream Class: C NSW 2162

County: Johnston	Sub-Basin: 03020201			Lo	attitude: 35.3	42 Long	Longitude: -78.216	
				N >Ref or				
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.7	27.3	19.2	
DO (mg/l)	17	N/A	4	0	4.4	11.4	6.7	
*** pH (SU)	17	N/A	6 to 9	1	5.5	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	99	209	116	
** Fecal Coliform (/100 mls)	12	N/A	400	0	34	340	146	
Suspended Residue (mg/l)	12	5	N/A	N/A	2.5	11.0	4.7	
Turbidity (NTU)	12	N/A	50	0	3.6	23.0	9.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.24	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.39	1.12	0.76	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.47	0.16	
TP (mg/l)	12	2	N/A	N/A	0.02	0.06	0.04	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5500000 Falling Creek @ SR 1219 (Old Grantham Road) near Grantham Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude: 35.3224 Longitude:** -78.1282 County: Wayne N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 6.3 26.2 18.6 10.5 DO (mg/l) 17 N/A 2 2.7 6.3 4 *** pH (SU) 17 N/A 6 to 9 3 5.7 6.9 N/A Conductivity (umhos/cm) 17 0 N/A N/A 104 309 165 ** Fecal Coliform (/100 mls) 1 46 420 133 12 N/A 400 5 N/A 2.5 15.0 4.8 Suspended Residue (mg/l) 12 N/A 12 N/A 50 0 3.3 33.0 9.1 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 0 N/A N/A 0.03 0.49 0.16 12 0 N/A N/A 0.40 1.58 0.91 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 1 10 0 0.02 1.49 0.33 12 12 0 N/A N/A 0.02 0.19 0.08 TP (mg/l)2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 25 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1,000 0 Iron (ug/l) 0 200 0 Manganese (ug/l) 0 Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5630000 Little River @ SR 2320, Riley Road near Zebulon **Stream Class:** HQW NSW

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8375 Longitude: -78.3599

Commy: Trans	~	o Dustit. o	.0020201	Zantimuet 66.5676 Zongituuet 76.66				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	2.6	27.9	17.2	
DO (mg/l)	17	N/A	4	1	3.2	12.3	7.1	
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	65	90	77	
** Fecal Coliform (/100 mls)	12	N/A	400	1	25	450	90	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	7.1	4.1	
Turbidity (NTU)	12	N/A	50	0	3.5	14.0	8.1	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.15	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.29	1.42	0.68	
NO2_NO3_N (mg/l)	12	0	10	0	0.02	0.34	0.17	
TP (mg/l)	12	3	N/A	N/A	0.02	0.09	0.05	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5685000 Stream Class: WS-V NSW Little River at Weaver Road near Bagley

Sub-Basin: 03020201 **Lattitude:** 35.5791 **Longitude:** -78.1723 County: Johnston

County: Connoton	200	o Busin. c	,0020201	Zammer 30.5701 Zongamer 10.11				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	3.6	26.8	17.9	
DO (mg/l)	17	N/A	4	0	4.1	12.4	8.1	
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.7	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	66	129	86	
** Fecal Coliform (/100 mls)	12	N/A	400	0	26	320	85	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	15.0	5.5	
Turbidity (NTU)	12	N/A	50	0	4.7	22.0	12.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.39	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.23	1.00	0.64	
NO2_NO3_N (mg/l)	12	0	10	0	0.03	0.34	0.16	
TP (mg/l)	12	0	N/A	N/A	0.04	0.27	0.08	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5750000 Stream Class: WS-V NSW Little River at SR 2339 (Bagley Road) near Lowell Mill

Sub-Basin: 03020201 *Lattitude*: 35.5613 County: Johnston **Longitude:** -78.1594

County. Johnston	Suo-Dusin. 03020201			Latitude. 55.5015 Longitude76.1				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	3.7	27.5	18.1	
DO (mg/l)	17	N/A	4	1	2.8	12.3	7.8	
*** pH (SU)	17	N/A	6 to 9	0	6.6	8.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	69	196	100	
** Fecal Coliform (/100 mls)	12	N/A	400	0	34	240	90	
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	12.0	5.0	
Turbidity (NTU)	12	N/A	50	0	4.5	19.0	11.1	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.13	0.07	
TKN_N (mg/l)	12	0	N/A	N/A	0.26	5.88	1.06	
NO2_NO3_N (mg/l)	12	0	10	0	0.06	0.33	0.18	
TP (mg/l)	12	0	N/A	N/A	0.04	0.15	0.09	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5790000 Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C. Stream Class: C NSW

Longitude: -78.7697 County: Wake Sub-Rasin: 03020201 Lattitude: 35 7697

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7697 Longitude:			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	18	N/A	N/A	N/A	3.2	26.3	16.7
DO (mg/l)	18	N/A	4	0	4.1	12.2	7.4
*** pH (SU)	18	N/A	6 to 9	1	5.8	7.2	N/A
Conductivity (umhos/cm)	18	0	N/A	N/A	52	96	73
** Fecal Coliform (/100 mls)	12	N/A	400	3	23	4,100	269
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	27.0	6.3
Turbidity (NTU)	12	N/A	50	0	4.4	29.0	12.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.15	0.08
TKN_N (mg/l)	12	0	N/A	N/A	0.34	1.77	0.77
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.39	0.16
TP (mg/l)	12	0	N/A	N/A	0.02	0.14	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5930000 Little River @ US 581 near Cherry Hospital Stream Class: CNSW

County: Wayne **Sub-Basin:** 03020201 **Lattitude:** 35.393 **Longitude:** -78.0258

County: Wayne	Sub-Basin: 03020201			L	uttituae: 35.3	193 Long	Longitude: -78.02	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.5	28.3	19.9	
DO (mg/l)	17	N/A	4	0	5.0	11.6	7.6	
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	67	176	108	
** Fecal Coliform (/100 mls)	12	N/A	400	0	72	380	137	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	35.0	9.8	
Turbidity (NTU)	12	N/A	50	0	5.6	33.0	15.7	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.16	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.37	1.36	0.75	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.09	0.46	0.30	
TP (mg/l)	12	0	N/A	N/A	0.03	0.15	0.09	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6010950 Stream Class: CNSW Walnut Creek @ SR 1730 (Saint Johns Church Road) near

Walnut Creek

County: Wayne **Sub-Basin:** 03020202 **Lattitude:** 35.2817 **Longitude:** -77.8686

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.1	25.9	18.9
DO (mg/l)	17	N/A	4	0	4.1	11.4	6.8
*** pH (SU)	17	N/A	6 to 9	9	5.3	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	72	136	97
** Fecal Coliform (/100 mls)	12	N/A	400	1	2	530	16
Suspended Residue (mg/l)	12	6	N/A	N/A	2.5	5.8	3.1
Turbidity (NTU)	12	N/A	50	0	2.3	5.6	3.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.22	0.13
TKN_N (mg/l)	12	0	N/A	N/A	0.28	1.01	0.57
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.42	1.74	0.89
TP (mg/l)	12	4	N/A	N/A	0.02	0.11	0.04
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6024000 Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs *Stream Class:* C NSW

Longitude: -77.846 **Sub-Basin:** 03020202 *Lattitude*: 35.229 County: Wayne

County: Wayne	Sub-Basin: 03020202			Lo	attītude: 35.2	29 <i>Long</i>	Longitude: -77.84	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.9	30.3	20.4	
DO (mg/l)	17	N/A	4	0	5.3	12.5	8.3	
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	81	252	154	
** Fecal Coliform (/100 mls)	12	N/A	400	2	25	927	101	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.4	69.0	24.0	
Turbidity (NTU)	12	N/A	50	3	6.6	80.0	29.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.48	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.38	1.12	0.74	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.26	0.63	0.41	
TP (mg/l)	12	0	N/A	N/A	0.04	0.35	0.13	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044400 Stream Class: C Sw NSW Bear Creek at SR 1603, Washington Street near LaGrange

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.3137 **Longitude:** -77.8153

County: Lenoir	Suo-Basin: 03020202			Lattitude: 35.3137 Longitude			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.4	26.4	17.6
DO (mg/l)	17	N/A	4	0	5.9	11.2	8.3
*** pH (SU)	17	N/A	6 to 9	2	5.7	6.9	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	94	137	121
** Fecal Coliform (/100 mls)	12	N/A	400	2	11	5,000	98
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	40.0	9.8
Turbidity (NTU)	12	N/A	50	0	3.4	50.0	12.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	1.04	0.20
TKN_N (mg/l)	12	0	N/A	N/A	0.64	1.42	0.86
NO2_NO3_N (mg/l)	12	0	N/A	N/A	1.11	2.97	1.97
TP (mg/l)	12	0	N/A	N/A	0.04	0.31	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044500 Bear Creek @ SR 1311 (Bear Creek Road) near Kinston Stream Class: WS-IV Sw N

Sub-Basin: 03020202 **Lattitude:** 35.2489 County: Lenoir **Longitude:** -77.7843

County. Lenon	Sub-Busin. 03020202			Lunuae. 55.2469 Longuae11.1				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.5	24.7	18.1	
DO (mg/l)	17	N/A	4	0	6.7	11.4	8.6	
*** pH (SU)	17	N/A	6 to 9	1	5.8	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	100	125	114	
** Fecal Coliform (/100 mls)	12	N/A	400	1	26	450	103	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	12.0	5.1	
Turbidity (NTU)	12	N/A	50	0	2.7	11.0	6.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.29	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.38	0.90	0.67	
NO2_NO3_N (mg/l)	12	0	10	0	0.85	3.70	1.81	
TP (mg/l)	12	0	N/A	N/A	0.03	0.28	0.12	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6055000 Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange Stream Class: C Sw NSW

Sub-Basin: 03020202 **Lattitude:** 35.3119 **Longitude:** -77.7313 County: Lenoir

County. Lenon	540-Busin. 03020202			Lutitude: 55.5119 Longitude: -11.15				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	16	N/A	N/A	N/A	6.8	24.9	17.6	
DO (mg/l)	16	N/A	4	0	6.7	11.3	8.7	
*** pH (SU)	16	N/A	6 to 9	1	5.1	7.8	N/A	
Conductivity (umhos/cm)	16	0	N/A	N/A	73	136	114	
** Fecal Coliform (/100 mls)	11	N/A	400	4	80	700	271	
Suspended Residue (mg/l)	11	3	N/A	N/A	2.5	20.0	5.5	
Turbidity (NTU)	11	N/A	50	0	2.7	13.0	6.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	11	0	N/A	N/A	0.06	0.15	0.09	
TKN_N (mg/l)	11	0	N/A	N/A	0.27	0.94	0.66	
NO2_NO3_N (mg/l)	11	0	N/A	N/A	1.92	3.83	3.13	
TP (mg/l)	11	1	N/A	N/A	0.02	0.15	0.08	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6150000 Neuse River @ NC 11 Bypass at Kinston Stream Class: CNSW

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.2587 **Longitude:** -77.5835

Country: Lonon	~~	o Busin. c	0020202	Editional Co. 2001 Editional 11.00				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.5	30.0	20.5	
DO (mg/l)	17	N/A	4	0	5.4	11.9	8.4	
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.9	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	79	239	154	
** Fecal Coliform (/100 mls)	12	N/A	400	1	28	1,100	102	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.9	78.0	26.5	
Turbidity (NTU)	12	N/A	50	1	6.2	80.0	30.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.15	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.39	1.43	0.79	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.21	0.69	0.45	
TP (mg/l)	12	0	N/A	N/A	0.05	0.23	0.12	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6250000 Neuse River @ NC 55 near Graingers Stream Class: CNSW

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.2957 **Longitude:** -77.4962

Country: Zonon	2	o Dustin.	0020202	Database 00.2001 Bongillate 11.10				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.5	30.1	20.4	
DO (mg/l)	17	N/A	4	0	5.5	11.9	8.3	
*** pH (SU)	17	N/A	6 to 9	0	6.8	7.8	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	80	280	163	
** Fecal Coliform (/100 mls)	12	N/A	400	1	16	900	92	
Suspended Residue (mg/l)	12	0	N/A	N/A	5.5	67.0	27.5	
Turbidity (NTU)	12	N/A	50	2	7.1	70.0	28.7	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.21	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.37	1.22	0.77	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.12	0.74	0.45	
TP (mg/l)	12	0	N/A	N/A	0.04	0.31	0.13	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6410000 Little Creek @ NC 97 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 **Lattitude:** 35.8279 **Longitude:** -78.3025

County. Wake	540-Dusin. 03020203			Luminue. 55.6219 Longitude16.50				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	3.0	24.3	15.6	
DO (mg/l)	17	N/A	4	2	3.5	11.3	6.8	
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	58	152	94	
** Fecal Coliform (/100 mls)	12	N/A	400	6	46	9,000	486	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	94.0	12.7	
Turbidity (NTU)	12	N/A	50	1	6.2	80.0	17.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.23	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.38	1.73	0.74	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.06	0.45	0.24	
TP (mg/l)	12	1	N/A	N/A	0.02	3.98	0.44	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6450000 Little Creek @ NC 39 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 *Lattitude*: 35.8125 **Longitude:** -78.2681

•						8	
				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.0	26.0	17.7
DO (mg/l)	17	N/A	4	0	6.2	11.4	8.2
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	102	559	314
** Fecal Coliform (/100 mls)	12	N/A	400	3	38	3,000	190
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	78.0	11.9
Turbidity (NTU)	12	N/A	50	1	3.9	100.0	21.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.15	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.47	1.85	0.73
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.57	2.45	1.17
TP (mg/l)	12	0	N/A	N/A	0.02	0.35	0.14
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6500000 Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner Stream Class: C NSW

Longitude: -78.1895 **Sub-Basin:** 03020203 *Lattitude*: 35.7301 County: Wilson

Sub-Basin: 03020203			Lo	attītude: 35.7	301 <i>Long</i>	Longitude: -78.189	
N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
17	N/A	N/A	N/A	3.5	26.9	16.8	
17	N/A	4	3	3.5	11.4	7.2	
17	N/A	6 to 9	0	6.5	7.4	N/A	
17	0	N/A	N/A	72	148	107	
12	N/A	400	1	38	550	132	
12	1	N/A	N/A	2.6	7.9	4.9	
12	N/A	50	0	5.2	22.0	12.5	
0	0	40	0				
12	1	N/A	N/A	0.02	0.42	0.12	
12	0	N/A	N/A	0.39	0.93	0.63	
12	0	N/A	N/A	0.02	0.63	0.16	
12	0	N/A	N/A	0.04	0.21	0.10	
0	0	2	0				
0	0	50	0				
0	0	7	0				
0	0	88	0				
0	0	25	0				
0	0	50	0				
0	0	87	0				
0	0	1,000	0				
0	0	N/A	N/A				
0	0	10	0				
0	0	0.012	N/A				
	N 17 17 17 17 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0	N N <rl 0="" 0<="" 1="" 12="" 17="" a="" n="" o="" td=""><td>17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 0 N/A 12 N/A 400 12 1 N/A 12 1 N/A 12 N/A 50 0 0 40 12 1 N/A 12 0 N/A 12 0 N/A 12 0 N/A 0 0 2 0 0 50 0 0 50 0 0 88 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A</td><td>N N Ref N > Ref or N 17 N/A N/A N/A 17 N/A 4 3 17 N/A 6 to 9 0 17 0 N/A N/A 12 N/A 400 1 12 1 N/A N/A 12 1 N/A N/A 12 1 N/A N/A 12 1 N/A N/A 12 0 N/A N/A 0 0 2 0 0 0 50 0 0 0 50 0 0 0<td>N N<rl< th=""> Ref or N N > Ref Minimum 17 N/A N/A N/A 3.5 17 N/A 4 3 3.5 17 N/A 6 to 9 0 6.5 17 0 N/A N/A 72 12 N/A 400 1 38 12 1 N/A N/A 2.6 12 N/A 50 0 5.2 0 0 40 0 5.2 0 0 40 0 5.2 0 0 40 0 5.2 0 0 40 0 0 12 1 N/A N/A 0.02 12 0 N/A N/A 0.02 12 0 N/A N/A 0.04 0 0 7 0 0 0 7 0 0 0 <</rl<></td><td>N N>Ref or N N>Ref or N Minimum Maximum 17 N/A N/A N/A 3.5 26.9 17 N/A 4 3 3.5 11.4 17 N/A 6 to 9 0 6.5 7.4 17 0 N/A N/A 72 148 12 N/A 400 1 38 550 12 1 N/A N/A 2.6 7.9 12 N/A 50 0 5.2 22.0 0 0 40 0 0 42 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.63 12 0 N/A N/A 0.02 0.63 12 0 N/A N/A 0.04 0.21 0 0</td></td></rl>	17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 0 N/A 12 N/A 400 12 1 N/A 12 1 N/A 12 N/A 50 0 0 40 12 1 N/A 12 0 N/A 12 0 N/A 12 0 N/A 0 0 2 0 0 50 0 0 50 0 0 88 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A	N N Ref N > Ref or N 17 N/A N/A N/A 17 N/A 4 3 17 N/A 6 to 9 0 17 0 N/A N/A 12 N/A 400 1 12 1 N/A N/A 12 1 N/A N/A 12 1 N/A N/A 12 1 N/A N/A 12 0 N/A N/A 0 0 2 0 0 0 50 0 0 0 50 0 0 0 <td>N N<rl< th=""> Ref or N N > Ref Minimum 17 N/A N/A N/A 3.5 17 N/A 4 3 3.5 17 N/A 6 to 9 0 6.5 17 0 N/A N/A 72 12 N/A 400 1 38 12 1 N/A N/A 2.6 12 N/A 50 0 5.2 0 0 40 0 5.2 0 0 40 0 5.2 0 0 40 0 5.2 0 0 40 0 0 12 1 N/A N/A 0.02 12 0 N/A N/A 0.02 12 0 N/A N/A 0.04 0 0 7 0 0 0 7 0 0 0 <</rl<></td> <td>N N>Ref or N N>Ref or N Minimum Maximum 17 N/A N/A N/A 3.5 26.9 17 N/A 4 3 3.5 11.4 17 N/A 6 to 9 0 6.5 7.4 17 0 N/A N/A 72 148 12 N/A 400 1 38 550 12 1 N/A N/A 2.6 7.9 12 N/A 50 0 5.2 22.0 0 0 40 0 0 42 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.63 12 0 N/A N/A 0.02 0.63 12 0 N/A N/A 0.04 0.21 0 0</td>	N N <rl< th=""> Ref or N N > Ref Minimum 17 N/A N/A N/A 3.5 17 N/A 4 3 3.5 17 N/A 6 to 9 0 6.5 17 0 N/A N/A 72 12 N/A 400 1 38 12 1 N/A N/A 2.6 12 N/A 50 0 5.2 0 0 40 0 5.2 0 0 40 0 5.2 0 0 40 0 5.2 0 0 40 0 0 12 1 N/A N/A 0.02 12 0 N/A N/A 0.02 12 0 N/A N/A 0.04 0 0 7 0 0 0 7 0 0 0 <</rl<>	N N>Ref or N N>Ref or N Minimum Maximum 17 N/A N/A N/A 3.5 26.9 17 N/A 4 3 3.5 11.4 17 N/A 6 to 9 0 6.5 7.4 17 0 N/A N/A 72 148 12 N/A 400 1 38 550 12 1 N/A N/A 2.6 7.9 12 N/A 50 0 5.2 22.0 0 0 40 0 0 42 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.63 12 0 N/A N/A 0.02 0.63 12 0 N/A N/A 0.04 0.21 0 0	

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6680000 Longitude: -78.1597 County: Nash Sub-Rasin: 03020203 Lattitude: 35 7519

County: Nash	Sub-Basin: 03020203			Lo	attitude: 35.7	7519 <i>Long</i>	<i>Longitude: -</i> 78.15	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	3.0	27.9	17.4	
DO (mg/l)	17	N/A	4	5	2.5	11.5	6.1	
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.1	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	57	96	76	
** Fecal Coliform (/100 mls)	12	N/A	400	0	25	116	63	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	15.0	5.5	
Turbidity (NTU)	12	N/A	50	0	7.2	24.0	15.6	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.20	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.33	1.79	0.92	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.33	0.12	
TP (mg/l)	12	1	N/A	N/A	0.02	0.15	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6765000 Stream Class: C Sw NSW Contentnea Creek at Willow Springs drive near Dixie

Sub-Basin: 03020203 **Lattitude:** 35.6838 County: Wilson Longitude: -77.941

County. Wilson	Sui	Suo-Dusin. 03020203			Luminue. 55.0050 Longitude11.94				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	3.2	29.9	19.6		
DO (mg/l)	17	N/A	4	2	3.0	12.4	7.1		
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.2	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	62	93	82		
** Fecal Coliform (/100 mls)	12	N/A	400	0	10	370	90		
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	7.7	4.8		
Turbidity (NTU)	12	N/A	50	0	3.8	25.0	9.9		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.28	0.10		
TKN_N (mg/l)	12	0	N/A	N/A	0.44	1.29	0.76		
NO2_NO3_N (mg/l)	12	2	N/A	N/A	0.02	0.51	0.17		
TP (mg/l)	12	1	N/A	N/A	0.02	0.13	0.06		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	88	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	N/A	N/A					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6890000 Stream Class: C Sw NSW Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson

Sub-Basin: 03020203 **Lattitude:** 35.6429 *Longitude:* -77.8902 County: Wilson N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 3.1 29.2 19.4 DO (mg/l) 17 N/A 0 4.6 12.1 7.9 4 *** pH (SU) 17 N/A 6 to 9 0 6.0 7.4 N/A Conductivity (umhos/cm) 17 0 N/A N/A 88 265 187 ** Fecal Coliform (/100 mls) 1 26 6,000 164 12 N/A 400 0 N/A 3.3 7.8 5.2 Suspended Residue (mg/l) 12 N/A 12 N/A 50 0 4.6 16.0 8.9 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 0 N/A N/A 0.04 0.67 0.23 12 0 N/A N/A 0.54 1.49 0.89 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 N/A N/A 0.27 1.28 0.87 12 12 N/A N/A 0.02 0.33 0.12 TP (mg/l)1 2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1,000 0 Iron (ug/l) 0 Manganese (ug/l) 0 N/A N/A Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7210000 Stream Class: C Sw NSW Contentnea Creek @ NC 58 near Stantonsburg

Sub-Basin: 03020203 **Lattitude:** 35.5861 County: Wilson **Longitude:** -77.8111

County. Wilson	Su	v-Dusin.	13020203	Latitude. 55.5601 Longitude11.			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.2	30.3	19.4
DO (mg/l)	17	N/A	4	0	4.3	12.7	7.5
*** pH (SU)	17	N/A	6 to 9	0	6.2	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	74	261	162
** Fecal Coliform (/100 mls)	12	N/A	400	0	28	290	109
Suspended Residue (mg/l)	12	0	N/A	N/A	3.2	7.1	5.0
Turbidity (NTU)	12	N/A	50	0	4.7	21.0	10.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.78	0.16
TKN_N (mg/l)	12	0	N/A	N/A	0.56	0.99	0.76
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.27	0.59	0.40
TP (mg/l)	12	1	N/A	N/A	0.02	0.17	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7240000

Longitude: -77.7947 **Sub-Basin:** 03020203 *Lattitude*: 35.5976 County: Wilson

County: Wilson	Sub-Basin: 03020203			Lo	attitude: 35.5	976 <i>Long</i>	Longitude: -77.79	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	3.9	26.8	17.2	
DO (mg/l)	17	N/A	4	8	1.5	12.5	5.9	
*** pH (SU)	17	N/A	6 to 9	0	6.2	7.1	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	67	152	104	
** Fecal Coliform (/100 mls)	12	N/A	400	1	33	540	92	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	20.0	5.0	
Turbidity (NTU)	12	N/A	50	0	7.5	23.0	12.6	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.17	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.44	1.09	0.80	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.65	0.21	
TP (mg/l)	12	1	N/A	N/A	0.02	0.17	0.11	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7325000 Stream Class: C Sw NSW Nahunta Swamp @ NC 58 near Contentnea

Sub-Basin: 03020203 **Lattitude:** 35.5081 County: Greene **Longitude:** -77.7455

County. Greene	Sub-Busin . 03020203			Luttitute. 55.5001 Longitute17.72				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.2	26.3	17.4	
DO (mg/l)	17	N/A	4	0	5.1	12.4	8.1	
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	71	131	111	
** Fecal Coliform (/100 mls)	12	N/A	400	3	39	3,700	285	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	27.0	6.1	
Turbidity (NTU)	12	N/A	50	0	4.8	50.0	12.1	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.09	1.17	0.26	
TKN_N (mg/l)	12	0	N/A	N/A	0.40	2.02	0.91	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.85	2.12	1.26	
TP (mg/l)	12	1	N/A	N/A	0.02	0.29	0.12	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7330000 Stream Class: C Sw NSW Contentnea Creek @ US 13 near Snow Hill

Sub-Basin: 03020203 *Lattitude*: 35.4585 County: Greene **Longitude:** -77.6753

County. Greene	Sub-Busin . 03020203			Luniume. 35.4365 Longitume11.61				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.8	29.3	19.2	
DO (mg/l)	17	N/A	4	0	5.1	12.5	7.8	
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.1	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	89	179	133	
** Fecal Coliform (/100 mls)	12	N/A	400	1	42	610	87	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	12.0	5.7	
Turbidity (NTU)	12	N/A	50	0	4.5	21.0	10.7	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.65	0.16	
TKN_N (mg/l)	12	0	N/A	N/A	0.59	1.29	0.83	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.46	0.96	0.70	
TP (mg/l)	12	1	N/A	N/A	0.02	0.16	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7690000 Stream Class: C Sw NSW Little Contentnea Creek @ SR 1218 (Chinquapin Road) near

County: Pitt **Sub-Basin:** 03020203 **Lattitude:** 35.5881 **Longitude:** -77.5416

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	3.0	27.4	17.8
DO (mg/l)	17	N/A	4	8	1.1	11.5	4.9
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	71	498	202
** Fecal Coliform (/100 mls)	12	N/A	400	2	55	2,000	165
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	7.8	4.5
Turbidity (NTU)	12	N/A	50	0	4.5	20.0	9.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.10	0.74	0.37
TKN_N (mg/l)	12	0	N/A	N/A	0.53	6.79	1.69
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.11	9.12	1.14
TP (mg/l)	12	0	N/A	N/A	0.05	0.96	0.41
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7740000

Sub-Basin: 03020203 **Longitude:** -77.4854 County: Pitt *Lattitude*: 35 4567

County: Pitt	Su	Sub-Basin: 03020203			attitude: 35.4	567 <i>Long</i>	Longitude: -77.48	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.0	27.9	18.4	
DO (mg/l)	17	N/A	4	0	4.0	12.2	7.1	
*** pH (SU)	17	N/A	6 to 9	1	5.5	7.7	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	89	229	165	
** Fecal Coliform (/100 mls)	12	N/A	400	1	34	550	139	
Suspended Residue (mg/l)	12	7	N/A	N/A	2.5	4.9	2.8	
Turbidity (NTU)	12	N/A	50	0	4.4	14.0	8.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.35	0.14	
TKN_N (mg/l)	12	0	N/A	N/A	0.50	1.44	0.85	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	1.11	0.35	
TP (mg/l)	12	0	N/A	N/A	0.03	0.53	0.24	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7850000 Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp *Stream Class:* C Sw NSW dock upstream of the bridge.

County: Craven **Sub-Basin:** 03020202 *Lattitude*: 35.31368 *Longitude*: -77.30287

	N >Ref or								
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average		
Temperature (C)	16	N/A	N/A	N/A	4.2	30.0	20.0		
DO (mg/l)	16	N/A	4	0	5.6	11.8	8.2		
*** pH (SU)	16	N/A	6 to 9	0	6.3	8.2	N/A		
Conductivity (umhos/cm)	16	0	N/A	N/A	88	247	161		
** Fecal Coliform (/100 mls)	11	N/A	400	1	11	490	55		
Suspended Residue (mg/l)	11	0	N/A	N/A	4.9	39.0	15.5		
Turbidity (NTU)	11	N/A	50	0	7.5	30.0	16.4		
Chlorophyll-a (ug/l)	11	1	40	0	1.00	17.70	6.37		
NH3_N (mg/l)	11	0	N/A	N/A	0.03	0.25	0.10		
TKN_N (mg/l)	11	0	N/A	N/A	0.50	1.43	0.85		
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.18	0.71	0.46		
TP (mg/l)	11	0	N/A	N/A	0.03	0.32	0.12		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	88	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	N/A	N/A					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J8870000 Stream Class: SB Sw NSW Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Bern

County: Craven **Sub-Basin:** 03020204 *Lattitude*: 35.10159 **Longitude:** -77.03708

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.5	30.7	20.5
DO (mg/l)	17	N/A	5	1	3.7	10.9	7.2
*** pH (SU)	17	N/A	6.8 to 8.5	1	6.7	7.9	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	139	18,211	8,781
** Fecal Coliform (/100 mls)	12	N/A	400	1	2	590	35
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	28.0	11.5
Turbidity (NTU)	12	N/A	25	5	4.1	45.0	21.9
Chlorophyll-a (ug/l)	12	0	40	0	5.72	29.58	16.13
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.23	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.39	2.14	0.94
NO2_NO3_N (mg/l)	12	1	10	0	0.02	0.59	0.19
TP (mg/l)	12	0	N/A	N/A	0.04	0.28	0.13
Cadmium (ug/l)	0	0	5	0			
Chromium (ug/l)	0	0	20	0			
Copper (ug/l)	0	0	3	0			
Nickel (ug/l)	0	0	8	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	86	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.025	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.