Lower Neuse Basin Association P.O. Box 1410 Clayton, North Carolina 27528-1410

Annual Monitoring Report 2023

Submitted By: _______, Chairman Charles Smithwick

Prepared By: Haywood M. Phthisic, III, Executive Director

Lower Neuse Basin Association Contact Information

Officers of the Lower Neuse Basin Association

Chairman -

Charles Smithwick Contentnea MSD P. O. Box 477 Grifton, N. C. 252.413.8898 cmsd100@embargmail.com

Treasurer -

Jimmy Pridgen
City of Wilson
P.O. Box 8005
Cary, N.C. 27512 - 8005
919.469.4095
donald.smith@townofcary.org

Vice Chairman -

Edward Buchan
City of Raleigh
P. O. Box 590
Raleigh, N. C. 27602
919.996.3471
Edward.Buchan@raleighnc.gov

Secretary -

Kenneth Stevens
City of Kinston
2101 Becton Farm Road
Kinston, N.C. 28501
252.939.3375
Kenneth.Stevens@ci.kinston.nc.us

Associates:

Executive Director -

Haywood M. Phthisic, III P.O. Box 1410 Clayton, N.C. 27528-1410 919.796.8049 exec.director@lnba.net

Association Counsel -

Daniel F. McLawhorn 1706 St. Mary's Street Raleigh, N.C. 27608 919.612.4520 hgdunn@poynerspruill.com

Coalition Web Site Address - https://www.lnba.net

Lower Neuse Basin Association April 18, 2024

Members and Contact Information

A complete list of LNBA delegates for 2023 follows in Section I.

Monitoring Stations for 2023

A complete list of the monitoring stations with station numbers, descriptions, coordinates, county, sub basin and stream classification included in Section II. The LNBA staff visited each station during 2023.

The Agreement between the LNBA and the Division of Water Resources was renewed in 2019. The effective date was August 1, 2019 through July 31, 2024. There were several sampling stations, added, deleted, or moved to a better location for safety reasons or environmental conditions.

Quality Assurance/Quality Control Issues

Waypoint Analytical acquired Environment I in 2023 and the business name was changed during the year. Waypoint Analytical reported no quality assurance or quality control issues in 2023.

Waypoint Analytical reported it completed and passed proficiency testing for its satellite lab (field testing equipment) in 2023.

NCDEO- DWO did not conduct a field review and inspection in 2023.

On April 3, 2007, the Division of Water Quality suspended the collection and analysis of total recoverable metals as required by the monitoring coalitions. The metals are no longer collected as part of the LNBA MOA agreement.

The Waypoint Analytical contact information and sampling methods/protocols are listed in Section III with the sampling errors and omissions for 2023.

Special Projects

The Lower Neuse Basin Association, in cooperation with its sister organization, the Neuse River Compliance Association, has continued with its partnership with Dr. Hans Pearl of the University of North Carolina at Chapel Hill, Institute of Marine Science. The two associations support the MODMON monitoring program of the Neuse River Estuary. The associations began assisting with this research in July 2006.

Suggested Changes

There are no suggested changes at this time.

Statistical Analysis of Data

Statistical analyses of the data for each monitoring station are included in Section IV.

Section I

LNBA Members and Contact Information

NPDES Permit #	LNBA Permittees Ownership and Facility	Authorized Representative and Title	County	Region	HUC (8 Digit)
NC0003417	Duke Energy Progress, LLC H. F. Lee Energy Complex	Jeffery D. Hines General Manager	Wayne	WaRO	3020201
NC0003760	CovationBio, Inc.	David Suggs	Lenoir	WaRO	3020202
NC0020389	Town of Benson - Benson WWTP	Kimberly Picket Public Utility Director	Johnston	RRO	3020201
NC0021253	City of Havelock - Havelock WWTP	Chris McGee City Manager	Craven	WaRO	3020204
NC0021644	Town of LaGrange - LaGrange WWTP	Shawn Condon Town Manager	Lenoir	WaRO	3020202
NC0023906	City of Wilson - Wilson WWTP	Grant Goings City Manager	Wilson	RRO	3020203
NC0023949	City of Goldsboro - Goldsboro WWTP	Matthew Livingston City Manager	Wayne	WaRO	3020202
NC0024236	City of Kinston - Kinston Regional WWTF	Steve Miller Director of Public Services	Lenoir	WaRO	3020202
NC0025348	City of New Bern - New Bern WWTP	Foster Hughes City Manager	Craven	WaRO	3020204
NC0025453	Town of Clayton - Little Creek WWTP	Rich Cappola Town Manager	Johnston	RRO	3020201
NC0029033	City of Raleigh - Neuse River WWTP	Edward Buchan Assistant Utility Director	Wake	RRO	3020201
NC0029572	Town of Farmville - Farmville WWTP	David Hodgkins Town Manager	Pitt	WaRO	3020203
NC0030716	Johnston County Central Johnston County Regional WWTP	Rick J. Hester County Manager	Johnston	RRO	3020201
NC0030759	City of Raleigh - Smith Creek WWTP	Edward Buchan Assistant Utility Director	Wake	RRO	3020201
NC0032077	Contentnea Metropolitan Sewerage District Contentnea MSD WWTP	Charles M. Smithwick, Jr. District Manager	Pitt	WaRO	3020203
NC0048879	Town of Cary - North WWTP	Jonathan Bulla North Cary WRF Manager	Wake	RRO	3020201
NC0064050	Town of Apex - Apex WRF	Randal E. Vosburg Town Manager	Wake	RRO	3020201
NC0064891	Town of Kenly - Kenly Regional WWTP	Tony Sears Interim Town Manager	Johnston	RRO	3020201
NC0065102	Town of Cary - South WWTP	Jarrod Buchanan South Cary WRF Manager	Wake	RRO	3020201
NC0066516	Town of Fuquay Varina Terrible Creek WWTP	Michael Wagner Town Manager	Wake	RRO	3020201
NC0020842	Town of Snow Hill Snow Hill WWTF	Todd Whaley Town Manager	Greene	WaRO	3020203
NC0079316	City of Raleigh - Little Creek WWTP	Edward Buchan Assistant Utility Director	Wake	RRO	3020203
NC0084735	Johnston County Johnston County WTP	Rick J. Hester County Manager	Johnston	RRO	3020201

Section II

Monitoring Station Information

List Of Monitoring Stations

Station	Location	County	Lattitude	Lattitude Longitude Class	Class	Sub-Basin
J2230000	Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest	Wake	35.9182	-78.5348	C NSW	03020201
J2330000	Neuse River at SR 2215 (Buffalo Road) near Neuse	Wake	35.8479	-78.5302	C NSW	03020201
J3310000	Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh	Wake	35.8041	-78.6081	C NSW	03020201
13970000	Walnut Creek at SR 2551 (Barwell Road) near Raleigh	Wake	35.7493	-78.5345	C NSW	03020201
J4050000	Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh	Wake	35.7266	-78.5139	C NSW	03020201
14080000	Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale	Wake	35.7309	-78.4776	C NSW	03020201
J4115000	Marks Creek @ Neuse River Trail near Archers Lodge	Johnston	35.693264	-78.438694	C NSW	03020201
J4130000	Neuse River @ SR 1700 (Covered Bridge Road) near Archer's Lodge	Johnston	35.6749	-78.4364	WS-V NSW	03020201
J4170000	Neuse River @ at NC 42E of Clayton	Johnston	35.6473	-78.4056	WS-IV NSW	03020201
J4370000	Neuse River at US 70 Business @ Smithfield	Johnston	35.5128	-78.3498	WS-IV NSW	03020201
J4414000	Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia	Wake	35.7187	-78.7527	WS-III NSW	03020201
J4500000	Swift Creek @ Indian Creek former discharge location near Garner, N.C.	Wake	35.6476	-78.6041	C NSW	03020201
J4510500	Swift Creek at SR 1525, Cornwallis Road near Clayton	Johnston	35.5999	-78.5356	C NSW	03020201
J4511000	White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.	Johnston	35.6176	-78.5281	C NSW	03020201
J4520000	Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C.	Johnston	35.5515	-78.46	C NSW	03020201
J4580000	Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston County Airport	Johnston	35.5442	-78.397	C NSW	03020201
14690000	Middle Creek @ SR 1152 (Holly Springs Road) near Holly Springs	Wake	35.6609	-78.8042	C NSW	03020201
14868000	Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks	Wake	35.6356	-78.7279	C NSW	03020201
J4980000	Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs	Wake	35.6091	-78.6866	C NSW	03020201

Page 1 of 3 Monday, April 15, 2024

fo
7
Page

Station	Location	County	Lattitude	Longitude	Class	Sub-Basin
J5002000	Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson	Johnston	35.5626	-78.5756	C NSW	03020201
J5010000	Middle Creek @ NC 210 near Smithfield	Johnston	35.5075	-78.4013	C NSW	03020201
J5170000	Black Creek @ SR 1162 (Black Creek Road) near Four Oaks	Johnston	35.46925	-78.45681	C NSW	03020201
J5250000	Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill	Johnston	35.3741	-78.1962	WS-IV NSW	03020201
15390000	Hannah Creek @ SR 1158 (Allens Crossroads Drive) near Benson	Johnston	35.3868	-78.511	C NSW	03020201
15390800	Hannah Creek @ SR 1227 (Ivey Road) near Benson	Johnston	35.4025	-78.4952	C NSW	03020201
J5410000	Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill	Johnston	35.342	-78.2162	C NSW	03020201
75500000	Falling Creek @ SR 1219 (Old Grantham Road) near Grantham	Wayne	35.3224	-78.1282	WS-IV NSW	03020201
75630000	Little River @ SR 2320, Riley Road near Zebulon	Wake	35.8375	-78.3599	HQW NSW	03020201
15685000	Little River at Weaver Road near Bagley	Johnston	35.5791	-78.1723	WS-V NSW	03020201
J5750000	Little River at SR 2339 (Bagley Road) near Lowell Mill	Johnston	35.5613	-78.1594	WS-V NSW	03020201
J5790000	Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C.	Wake	35.7697	-78.7697	C NSW	03020201
72930000	Little River @ US 581 near Cherry Hospital	Wayne	35.393	-78.0258	C NSW	03020201
J6010950	Walnut Creek @ SR 1730 (Saint Johns Church Road) near Walnut Creek	Wayne	35.2817	-77.8686	C NSW	03020202
J6024000	Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs	Wayne	35.229	-77.846	C NSW	03020202
J6044400	Bear Creek at SR 1603, Washington Street near LaGrange	Lenoir	35.3137	-77.8153	C Sw NSW	03020202
J6044500	Bear Creek @ SR 1311 (Bear Creek Road) near Kinston	Lenoir	35.2489	-77.7843	-77.7843 WS-IV SW NSW	03020202
J6055000	Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange	Lenoir	35.3119	-77.7313	C Sw NSW	03020202
J6150000	Neuse River @ NC 11 Bypass at Kinston	Lenoir	35.2587	-77.5835	C NSW	03020202
J6250000	Neuse River @ NC 55 near Graingers	Lenoir	35.2957	-77.4962	C NSW	03020202
J6410000	Little Creek @ NC 97 near Zebulon	Wake	35.8279	-78.3025	C NSW	03020203

Monday, April 15, 2024

Station	Location	County	Lattitude	Lattitude Longitude Class	Class	Sub-Basin
J6450000	Little Creek @ NC 39 near Zebulon	Wake	35.8125	-78.2681	C NSW	03020203
16500000	Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner	Wilson	35.7301	-78.1895	C NSW	03020203
16680000	Turkey Creek @ SR 1101 (Claude Lewis Rodd) near Middlesex	Nash	35.7519	-78.1597	C NSW	03020203
J6765000	Contentnea Creek at Willow Springs drive near Dixie	Wilson	35.6838	-77.941	C Sw NSW	03020203
0000689	Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson	Wilson	35.6429	-77.8902	C Sw NSW	03020203
J7210000	Contentnea Creek @ NC 58 near Stantonsburg	Wilson	35.5861	-77.8111	C Sw NSW	03020203
J7240000	Toisnot Swamp @ SR 1539 (Sand Pit Road) near Stantonsburg	Wilson	35.5976	-77.7947	C Sw NSW	03020203
J7325000	Nahunta Swamp @ NC 58 near Contentnea	Greene	35.5081	-77.7455	C Sw NSW	03020203
17330000	Contentnea Creek @ US 13 near Snow Hill	Greene	35.4585	-77.6753	C Sw NSW	03020203
0000692	Little Contentnea Creek @ SR 1218 (Chinquapin Road) near Farmville	Pitt	35.5881	-77.5416	C Sw NSW	03020203
J7740000	Little Contentnea Creek @ SR 1110 (HWY 903) near Scuffleton	Pitt	35.4567	-77.4854	C Sw NSW	03020203
17850000	Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp dock upstre	Craven	35.31368	-77.30287	C Sw NSW	03020202
J8870000	Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Be	Craven	35.10159	-77.03708	SB Sw NSW	03020204

Monday, April 15, 2024

Section III

Contract Laboratory Information, Audits, MOA Revisions, and Sample Errors and Omissions

Contract Laboratory Providing All Sampling and Analysis

Waypoint Analytical, Inc. (formally Environment I)

Mark Oliveira, General Manger 114 Oakmont Dr. Greenville, N.C. 27835-7085 252.756.6208 rboquist@waypointanalytical.com

Waypoint Analytical - River Basin Method Codes 2023

Parameter	EPA / SM code	Rev./ date
Temp (° C)	SM 2550B	2010
DO (mg/l)	SM 4500 OG	2016
pH (su)	SM 4500 HB	2011
Conductivity (umhos/cm)	SM 2510 B	2011
Fecal Coliform	SM 9222 D	2015
Suspended Residue, (mg/l)	SM 2540 D	2015
Turbidity (NTU)	SM 2130 B	2011
Chlorophyll_a (ug/l)	EPA 445.0	Rev. 1.2 - 1997
NH3_N (mg/l)	EPA 350.1	Rev. 2.0 - 1993
TKN_N (mg/l)	EPA 351.2	Rev. 2.0 - 1993
NO2_NO3_N (mg/l)	EPA 353.2	Rev. 2.0 - 1993
TP (mg/l)	EPA 365.4	Rev. 2.0 - 1974

STATE OF NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY

DIVISION OF WATER RESOURCES LABORATORY CERTIFICATION BRANCH

In accordance with the provisions of N.C.G.S. 143-215.3 (a) (1), 143-215.3 (a)(10) and NCAC 2H.0800:

Waypoint Analytical - Greenville

Is hereby certified to perform environmental analysis as listed on the Laboratory's Certified Parameter List and report monitoring data to DEQ for compilance with NPDES effluent, surface water, groundwater, soil and pretreatment regulations.

By reference 15A NCAC 2H.0800 is made a part of this certificate.

This certificate does not guarantee validity of data generated, but indicates the methodology, equipment, quality control procedures, records, and proficiency of the laboratory have been examined and found to be acceptable.

This certificate shall be valid until

12/31/2023

Todd Crawford

Certificate No. 10

Certified Parameters Listing

Waypoint Analytical - Greenville 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

12/31/2023 1/1/2023 6/29/2022 Certificate Number: Expiration Date: Effective Date:

10

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SM 4500 F ⁻ C-2011 (Aqueous)	HARDNESS TOTAL - WET CHEM	SM 2340 C-2011 (Aqueous)	NITROGEN, AMMONIA	EPA 350.1, Rev. 2.0, 1993 (Aqueous)	NITROGEN, NITRATE	(NO3 + NO2 EPA 353.2, Rev. 2.0, 1993) - (NO2 EPA 353.2, Rev. 2.0, 1993) (Aqueous)	NITROGEN, NITRITE	EPA 353.2, Rev. 2.0, 1993 (Aqueous)	NITROGEN, NO3 + NO2	EPA 353.2, Rev. 2.0, 1993 (Aqueous)	NITROGEN, TOTAL KJELDAHL	EPA 351.2, Rev. 2.0, 1993 (Aqueous)	OIL & GREASE	EPA 1664 Rev. B (Aqueous)	ORGANIC CARBON, TOTAL	SM 5310 C-2014 (Aqueous)	Hd	SM 4500 H+B-2011 (Aqueous)	PHOSPHATE, ORTHO	SM 4500 P E-2011 (Aqueous)	PHOSPHORUS, TOTAL	EPA 365.4, 1974 (Aqueous)	RESIDUE, DISSOLVED 180 C	SM 2540 C-2015 (Aqueous)	ASTM D5907-13 (Aqueous)	RESIDUE, SETTLEABLE	SM 2540 F-2015 (Aqueous)	RESIDUE, SUSPENDED	SM 2540 D-2015 (Aqueous)	RESIDUE. TOTAL	
INORGANIC	ALKALINITY	SM 2320 B-2011 (Aqueous)	BACTERIA - COLIFORM FECAL	SM 9221 E-2014 (MPN) (Aqueous)	SM 9221 E-2014 (MPN) (Biosolids)	SM 9222 D-2015 (MF) (Aqueous)	BACTERIA - COLIFORM TOTAL	SM 9222 B-2015 (MF) (Aqueous)	SM 9221 B-2014 (MPN) (Aqueous)	BACTERIA - ENTEROCOCCI	IDEXX Enterolert® (MPN) (Aqueous)	BOD	SM 5210 B-2016 (Aqueous)	CBOD	SM 5210 B-2016 (Aqueous)	CHLORIDE	SM 4500 Cl ⁻ B-2011 (Aqueous)	CHLOROPHYLL a	EPA 445.0, Rev. 1.2 (Fluorometric) (Aqueous)	COD	Hach 8000 (Aqueous)	COLOR, ADMI	SM 2120 F-2011 (ADMI) (Aqueous)	COLOR, PC	SM 2120 B-2011 (PtCo) (Aqueous)	CONDUCTIVITY	SM 2510 B-2011 (Aqueous)	CYANIDE	SM 4500 CN ⁻ E-2016 (Total) (Aqueous)	SM 4500 CN ⁻ E-2016 (Total) (Non-Aqueous)	

SM 2540 G-2015 (Non-Aqueous) SM 2540 B-2015 (Aqueous) SALINITY

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalities and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

SM 4500 O G-2016 (Aqueous)

FLUORIDE

DISSOLVED OXYGEN

Certified Parameters Listing

Waypoint Analytical - Greenville 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

12/31/2023 6/29/2022 1/1/2023 Certificate Number: Expiration Date: Effective Date:

10

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SM 3113 B-2010 (Non-Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	CALCIUM	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	CHROMIUM TOTAL	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	COBALT	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	COPPER	SM 3111 B-2011 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	IRON	SM 3111 B-2011 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	LEAD	SM 3113 B-2010 (Aqueous)	SM 3113 B-2010 (Non-Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
SM 2520 B-2011 (Aqueous)	SM 4500 SO4² E-2011 (Aqueous)	SULFIDE	SM 4500 S ²⁻ D-2011 (Aqueous)	TEMPERATURE	SM 2550 B-2010 (Aqueous)	TURBIDITY	SM 2130 B-2011 (Aqueous)	METAL	ALUMINUM	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	ANTIMONY	SM 3113 B-2010 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	ARSENIC	SM 3113 B-2010 (Aqueous)	SM 3113 B-2010 (Non-Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	BARIUM	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	BERYLLIUM	EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	CADMIUM	SM 3113 B-2010 (Aqueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

Certified Parameters Listing

Waypoint Analytical - Greenville _ab Name:

114 Oakmont Dr.

Address:

Greenville, NC 27858

Date of Last Amendment: Certificate Number: Expiration Date: Effective Date:

12/31/2023 6/29/2022

1/1/2023

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SW-846 6020 B (Aqueous)	SILVER
SW-846 6020 B (Agueous)	MAGNESIUM

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous) SM 3113 B-2010 (Aqueous) SW-846 6020 B (Aqueous) EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous) SM 3111 B-2011 (Aqueous)

SODIUM

SM 3111 B-2011 (Non-Aqueous) SM 3111 B-2011 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

EPA 245.1, Rev. 3.0, 1994 (Aqueous)

MERCURY

SW-846 7471 B (Non-Aqueous)

EPA 1631 E (Aqueous) MOLYBDENUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

SM 3111 B-2011 (Aqueous)

MANGANESE

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous)

THALLIUM

EPA 279.2, 1978 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

VANADIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

JICKEL

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SM 3113 B-2010 (Non-Aqueous)

SM 3113 B-2010 (Aqueous)

SELENIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

SM 3111 B-2011 (Aqueous)

POTASSIUM

EPA 200.8, Rev. 5.4, 1994 (Aqueous) SW-846 6020 B (Aqueous)

SM 3111 B-2011 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

DRGANIC

BASE NEUTRAL/ACID, ORGANICS

EPA 625.1, Dec 2016 (Aqueous)

exertification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807

Certified Parameters Listing

Waypoint Analytical - Greenville Lab Name:

114 Oakmont Dr.

Address:

Greenville, NC 27858

Expiration Date: Effective Date:

12/31/2023 1/1/2023

9

Certificate Number:

6/29/2022

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SW-846 8270 E (Aqueous)

CHLORINATED ACID HERBICIDES

SW-846 8151 A (Aqueous)

PESTICIDES, ORGANOCHLORINE

SW-846 8081 B (Aqueous)

PURGEABLE, AROMATICS EPA 602, 1984 (Aqueous)

SM 6200 C-2011 (Aqueous)

PURGEABLE, HALOCARBONS

SM 6200 C-2011 (Aqueous)

PURGEABLE, ORGANICS

EPA 624.1, Dec 2016 (Aqueous)

SW-846 8260 D (Aqueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

WP-342 Final Evaluation Report

Ver. 1 Page 8 of 46

A Waters Company

Ron Boquist General Manager Waypoint Analytical - Greenville 114 Oakmont Drive Greenville, NC 27858 (252) 756-6208

EPA ID:

ERA Customer Number: E54700 Report Issued: 09/05/20 Study Dates: 07/17/20

NC00024 E547001 09/05/2023 07/17/2023 - 08/31/2023

Analysis Date
Method Description A
Performance Evaluation
Acceptance Limits
Assigned Value
Reported Value
Units
Analyte
TNI Analyte Code

Analyst Name

Study Standard Deviation

> Study Mean

> > Z Score

Code Code NP PH (cat# 577, lot# P342-977)

	0.0926	
	9.52	
	-1.08	
	8/21/2023	
	SM 4500-H+ B-2011 2011	
	Acceptable	
	9.33 - 9.73	
	6.53	
	9.42	
	s.u.	
,	Н	
	1900	

WP Settleable Solids (cat# 883, lot# P342-911)

0.781	
06.7	
-0.252	
8/21/2023	
SM 2540 F-2015 2015	
Acceptable	
5.07 - 10.5	
7.45	
7.7	
mL/L	
Settleable Solids	
1965	

WP Solids (cat# 241, lot# P342-499)

1960	Total Suspended Solids	T/6m	09	60.0	47.6 - 67.9	Acceptable	SM 2540 D-2015 2015	8/22/2023	0.387	59.2	2.12	
1955	Total Dissolved Solids at 180°C	7/6w	464	474	427 - 521	Acceptable	ASTM D5907-13 2013	8/22/2023	-0.117	465	12.0	
1950	Total Solids at 105°C	T/6ш	524	250	495 - 605	Acceptable	SM 2540 B-2015 2015	8/16/2023	-0.943	540	17.3	

WP Simple Nutrients (cat# 584, lot# P342-505)

	(and = 10 and 11										
1515	1515 Ammonia as N	mg/L	5.16	5.45	4.24 - 6.69	Acceptable	Acceptable EPA 350.1 2 1993 8/17/2023 -0.979	8/17/2023	5.45	0.295	
1820	1820 Nitrate + Nitrite as N	mg/L		4.22	3.44 - 4.97 Not Reported	Not Reported			4.20	0.230	
1810	1810 Nitrate as N	mg/L		4.22	3.38 - 5.04 Not Reported	Not Reported			4.19	0.209	
1870	1870 ortho-Phosphate as P	mg/L		2.62	2.23 - 3.01	2.23 - 3.01 Not Reported			2.65	0.129	
1827	1827 Total Nitrogen	mg/L		9.67	5.52 - 13.8 Not Reported	Not Reported			9.67	0.309	

WP Complex Nutrients (cat# 579, lot# P342-525)

13.9 0.541	1.86 0.0916
4.53	1.80
8/29/2023	8/16/2023
EPA 351.2 2 1993	EPA 365.4 1974
Acceptable	Acceptable
10.4 - 17.2	1.51 - 2.23
14.0	1.87
16.3	2.03
mg/L	T/bm
Total Kjeldahl Nitrogen	Total phosphorus as P
1795	1910

All analytes except for 1,1-Biphenyl, 1,2-Diphenylhydrazine, 1,3-Dinitrobenzene, 2,3-Dichloroaniline, Acetophenone, Atrazine, Azobenzene, Benzaldehyde, Caprolactam, n-Decane and n-Octadecane in the Base/Neutrals, catalog # 833, are included in ERA's A2LA accreditation. Lab Code 1539.01.

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

WS-319 Final Evaluation Report

Ver. 1 Page 8 of 36

A Waters Company

Waypoint Analytical - Greenville 114 Oakmont Drive Greenville, NC 27858 (252) 756-6208 Mark Oliveira Laboratory Manager

EPA ID: ERA Customer Number: Report Issued: Study Dates:

NC00024 E547001 03/27/2023 02/06/2023 - 03/23/2023

Method Descript	
Performance Evaluation	
Acceptance Limits	
Assigned Value	
Reported Value	
Units	
Analyte	
TNI Analyte Code	

Analyst Name Study Standard Deviation Study Mean Z Score Analysis Date noit WS Hardness (cat# 555, lot# S319-693)

NAB NAB

7.07 3.39

-0.243

3/20/2023 3/20/2023

0.223 2.64

-1.14

EPA 200.8 5.4 1994 EPA 200.8 5.4 1994

Acceptable Acceptable

62.0 - 83.8 2.87 - 3.89

72.9 3.38

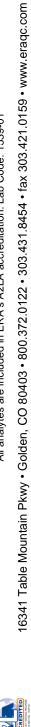
3.14 70.1

mg/L mg/L

Magnesium Calcium

1035 1085

6611	mnipos CC1.1	mg/L	24.4	77.0	23.0 - 31.0	Acceptable	EPA 200.8 5.4 1994	3/20/2023	-1.80	77.0	1.40	NAB	
1550	Calcium Hardness as CaCO3	mg/L		182	155 - 209	Not Reported				176	5.14		
1755	Total Hardness as CaCO3	mg/L	202	196	167 - 225	Acceptable	SM 2340 C-2011 2011	3/20/2023	1.87	192	5.55	ADR	
C Har	S Hardrace (catt 565 lott \$310-603)												


WS Hardness (cat# 555, lot# S319-693)

1035	1035 Calcium	mg/L	73.7	72.9	62.0 - 83.8	Acceptable	EPA 200.7 4.4 1994	3/13/2023 1.12		7.07	2.64	MTM
1085	1085 Magnesium	mg/L	3.51	3.38	2.87 - 3.89	Acceptable	EPA 200.7 4.4 1994	3/13/2023 0.520	0.520	3.39	0.223	MTM
1155	1155 Sodium	mg/L	28.3	27.0	23.0 - 31.0 Acceptable	Acceptable	EPA 200.7 4.4 1994	3/13/2023 0.867	0.867	27.0	1.46	MTM
1550	1550 Calcium Hardness as CaCO3	mg/L		182	155 - 209	Not Reported				176	5.14	
1755	1755 Total Hardness as CaCO3	mg/L		196	167 - 225	167 - 225 Not Reported				192	5.55	

WS Inorganics (cat# 591, lot# S319-698)

WS MOL	WS Inorganics (cat# 591, 10t# 5319-698)											
1505	1505 Alkalinity as CaCO3	mg/L	92.0	95.2	85.7 - 105	Acceptable	SM 2320 B-2011 2011	3/20/2023	-1.08	96.4	4.03	NMH
1575	1575 Chloride	mg/L	92.0	91.3	77.6 - 105	Acceptable	SM 4500-CI B-2011 2011	3/20/2023	0.151	91.6	2.58	rar
1610	1610 Conductivity at 25°C	mp/so/um	914	895	806 - 985	Acceptable	SM 2510 B-2011 2011	3/20/2023	2.07	892	10.5	BNC
1730	1730 Fluoride	mg/L	2.29	3.35	3.02 - 3.68	Not Acceptable	SM 4500-F C-2011 2011	3/23/2023	-5.77	3.37	0.188	SOL
1820	1820 Nitrate + Nitrite as N	mg/L	5.34	5.17	4.39 - 5.95	Acceptable	EPA 353.2 2 1993	3/20/2023	1.07	5.11	0.218	TRJ
1810	1810 Nitrate as N	mg/L	5.38	5.17	4.65 - 5.69	Acceptable	EPA 353.2 2 1993	3/21/2023	1.13	80.3	0.265	BMD
1125	1125 Potassium	mg/L	19.8	21.3	18.1 - 24.5	Acceptable	EPA 200.8 5.4 1994	3/20/2023	-1.39	21.2	1.03	NAB
2000 Sulfate	Sulfate	mg/L	151	153	130 - 176	Acceptable	SM4500SO4- 2011 2011	3/20/2023	-0.339	153	6.29	
1955	1955 Total Dissolved Solids at 180°C	mg/L	290	634	507 - 761	Acceptable	ASTM D5907-13 2013	3/14/2023	-0.591	611	35.2	BLV

Ron Boquist Waypoint Analytical - Greenville 114 Oakmont Drive Greenville, NC 27858 USA

WatR™Pollution Proficiency Testing

WatR™Pollution Study

Open Date: 07/17/2023

Close Date: 08/31/2023

Report Issued Date: 09/05/2023

September 5, 2023

Ron Boquist Waypoint Analytical - Greenville 114 Oakmont Drive Greenville, NC 27858

Enclosed is your final report for ERA's WP-342 WatR™Pollution Proficiency Testing (PT) study. Your final report includes an evaluation of all results submitted by your laboratory to ERA.

Data Evaluation Protocols: All analytes in ERA's WP-342 WatR™Pollution Proficiency Testing study have been evaluated using the following tiered approach. If the analyte is listed in the most current TNI Fields of Proficiency Testing (FoPT) table the evaluation was completed by comparing the reported result to the acceptance limits generated using the criteria contained in the table and the evaluation criteria contained in the 2016 TNI Standard, Volume 3. If the analyte is not included in the TNI FoPT table, the reported result has been evaluated using the procedures outlined in ERA's Standard Operating Procedure for the Generation of Performance Acceptance Limits (SOP 730002268).

Corrective Action Help: As part of your accreditation(s), you may be required to identify the root cause of any "Not Acceptable" results, implement the necessary corrective actions, and then satisfy your PT requirements by participating in a Supplemental (QuiK™Response) or future ERA PT study. ERA's technical staff is available to help your laboratory resolve any technical issues that may be impairing your PT performance and possibly affecting your routine data quality. Our laboratory and technical staff have many years of collective experience in performing the full range of environmental analyses. As part of our technical support, ERA offers QC samples that can be useful in helping you work through your technical issues.

Thank you for your participation in ERA's WP-342 WatR™Pollution Proficiency Testing study. If you have any questions, please contact our Proficiency Testing Department at 1-800-372-0122.

Sincerely,

Craig Huff

Senior Technical Manager

attachments

Report Recipient	Contact/Phone Number	Reporting Type
North Carolina (WP)	Todd Crawford / 919-733-3908 x202	All Analytes

WP-342 Definitions & Study Discussion

Study Dates: 07/17/2023 - 08/31/2023 Report Issued: 09/05/2023

WP Study Definitions

The Reported Value is the value that the laboratory reported to ERA.

The ERA Assigned Values are compliant with the most current TNI Fields of Proficiency Testing (FoPT) table. A parameter not added to the standard is given an Assigned Value of "< PTRL" per the guidelines contained in the 2016 TNI Standard. The assigned values are directly traceable to the commercially prepared starting materials used to manufacture the PT standards.

The Acceptance Limits are established per the criteria contained in the most current TNI FoPT table or ERA's SOP for the Generation of Performance Acceptance Limits™ as applicable.

The Performance Evaluation:

Acceptable = Reported Value falls within the

Acceptance Limits.

Not Acceptable = Reported Value falls outside the

Acceptance Limits.

No Evaluation = Reported Value cannot be evaluated.

Not Reported = No Value reported.

The Method Description is the method the laboratory reported to ERA.

WP Study Discussion

ERA's WP-342 WatR™Pollution Proficiency Testing study has been reviewed by ERA senior management and certified compliant with the requirements of the 2016 TNI Standard and the criteria contained in the most current TNI Fields of Proficiency Testing (FoPT) table.

ERA's WP-342 WatR™Pollution study standards were examined for any anomalies. A full review of all homogeneity, stability and accuracy verification data was completed. All analytical verification data for all analytes met the acceptance criteria contained in the 2016 TNI Standard and the criteria contained in the most current TNI FoPT table.

All activities associated with this proficiency testing study were performed by Waters/ERA with the exception of those noted below. The following physical samples/products were manufactured for Waters/ERA by a subcontractor:

Microbiology products with the following catalog numbers: 880, 935, 079, 077, 080, 595, 595A, 576, 576A

The data submitted by participating laboratories was also examined for study anomalies. There were no anomalies observed during the statistical review of the data.

ERA's WP-342 WatR™Pollution study reports shall not be reproduced except in their entirety and not without the permission of the participating laboratories. The report must not be used by the participating laboratories to claim product endorsement by any agency of the U. S. government.

The data contained herein are confidential and intended for your use only.

If you have any questions or concerns regarding your assessment in ERA's WatR™Pollution Proficiency Testing program, please contact our Proficiency Testing Department at 1-800-372-0122.

A Waters Company

Final Evaluation Report

Study: WP-342

ERA Customer Number: E964393

Laboratory Name: Waypoint Analytical -Greenville

Inorganic Results

WP-342 Final Evaluation Report

Ver. 1 Page 8 of 11

A Waters Company

General Manager Ron Boquist

ERA Customer Number: Report Issued: Study Dates: **EPA ID**:

NC01687 E964393 09/05/2023 07/17/2023 - 08/31/2023

Waypoint Analytical - Greenville 114 Oakmont Drive Greenville, NC 27858 (252) 756-6208

Analyst Name
Study Standard Deviation
Study Mean
Z Score
Analysis Date
Method Description
Performance Evaluation
Acceptance Limits
Assigned Value
Reported Value
Units
Analyte

WP Minerals (cat# 581, lot# P342-506)

TNI Analyte Code

1505 Alkalinity as CaCO3	mg/L		87.8	74.6 - 101	Not Reported				88.2	3.28	
1575 Chloride	T/6m		50.9	44.1 - 57.8	Not Reported				8.03	1.43	
1610 Conductivity at 25°C	mɔ/soyund	372	370	333 - 407	Acceptable	SM 2510 B-2011 2011	8/22/2023	-0.0801	373	10.6	
1730 Fluoride	T/6ш		2.01	1.60 - 2.35	Not Reported				2.00	0.126	
1125 Potassium	T/6ш		15.8	12.6 - 19.0	Not Reported				16.0	0.823	
Sodium	T/6m		72.7	58.2 - 87.2	Not Reported				72.8	4.61	
2000 Sulfate	mg/L		14.3	10.9 - 16.9	Not Reported				14.2	0.711	
1955 Total Dissolved Solids at 180°C	T/6m		310	265 - 355	Not Reported				300	19.4	
1950 Total Solids at 105°C	mg/L		326	281 - 371	Not Reported				321	18.6	
	Alkalinity as CaCO3 Chloride Conductivity at 25°C Fluoride Potassium Sodium Sulfate Total Dissolved Solids at 180°C Total Solids at 105°C	s at 180°C	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	mg/L 87.8 mg/L 50.9 mm/L 2.01 mg/L 15.8 mg/L 72.7 mg/L 14.3 s at 180°C mg/L 310 mg/L 326	mg/L 87.8 74.6-101 mg/L 50.9 44.1-57.8 pmhos/cm 372 370 44.1-57.8 mg/L 2.01 1.60-2.35 mg/L 72.7 58.2-87.2 mg/L 72.7 58.2-87.2 mg/L 310 265-355 mg/L 326 281-371	mg/L 87.8 74.6 - 101 Not Reported mg/L 50.9 44.1 - 57.8 Not Reported mg/L 2.01 1.60 - 2.35 Not Reported mg/L 72.7 58.2 - 87.2 Not Reported mg/L 72.7 58.2 - 87.2 Not Reported mg/L 14.3 10.9 - 16.9 Not Reported mg/L 326 281 - 371 Not Reported	mg/L 50.9 44.1 - 57.8 Not Reported mg/L 372 370 44.1 - 57.8 Not Reported mg/L 2.01 1.60 - 2.35 Not Reported 80.2510 B-2011 2011 mg/L 72.7 58.2 - 87.2 Not Reported 80.2 s at 180°C mg/L 326 281 - 371 Not Reported 80.2	mg/L 87.8 74.6 - 101 Not Reported mg/L 50.9 44.1 - 57.8 Not Reported mg/L 2.01 1.60 - 2.35 Not Reported mg/L 72.7 58.2 - 87.2 Not Reported mg/L 72.7 58.2 - 87.2 Not Reported mg/L 14.3 10.9 - 16.9 Not Reported mg/L 326 281 - 371 Not Reported	mg/L 87.8 74.6 - 101 Not Reported Proposed <	mg/L 50.9 74.6 - 101 Not Reported SM 2510 B-2011 2011 Mod Reported SM 2510 B-2011 2011 88.2 88.2 mg/L 372 370 44.1 - 57.8 Not Reported SM 2510 B-2011 2011 8/22/2023 -0.0801 37.3 mg/L 15.8 12.6 - 19.0 Not Reported SM 2510 B-2011 2011 16.0 16.0 mg/L 72.7 58.2 - 87.2 Not Reported SM 2510 B-2012 14.2 16.0 s at 180°C mg/L 14.3 10.9 - 16.9 Not Reported SM 2510 B-2012 300 mg/L mg/L 326 281 - 371 Not Reported SM 251 301

WP pH (cat# 577, lot# P342-977)

0.0926
9.52
-0.758
8/22/2023
SM 4500-H+ B-2011 2011
Acceptable
9.33 - 9.73
6.53
9.45
s.u.
I
1900 p

All analytes except for 1,1-Biphenyl, 1,2-Diphenylhydrazine, 1,3-Dinitrobenzene, 2,3-Dichloroaniline, Acetophenone, Atrazine, Azobenzene, Benzaldehyde, Caprolactam, n-Decane and n-Octadecane in the Base/Neutrals, catalog # 833, are included in ERA's A2LA accreditation. Lab Code 1539.01.

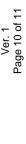
16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

Final Evaluation Report

Study: WP-342

ERA Customer Number: E964393

Laboratory Name: Waypoint Analytical -Greenville


Microbiology Results

All analytes except for 1,1-Biphenyl, 1,2-Diphenylhydrazine, 1,3-Dinitrobenzene, 2,3-Dichloroaniline, Acetophenone, Atrazine, Azobenzene, Benzaldehyde, Caprolactam, n-Decane and n-Octadecane in the Base/Neutrals, catalog # 833, are included in ERA's A2LA accreditation. Lab Code 1539.01.

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

WP-342 Final Evaluation Report

A Waters Company

General Manager Ron Boquist

EPA ID:

Analyst Name Study Standard Deviation Study Mean NC01687 E964393 09/05/2023 07/17/2023 - 08/31/2023 Z Score Analysis Date Method Description ERA Customer Number: Report Issued: Study Dates: Performance Evaluation Acceptance Limits Assigned Value Waypoint Analytical - Greenville 114 Oakmont Drive Greenville, NC 27858 (252) 756-6208 Reported Value Units Analyte

WP WasteWatR™ Coliform MicrobE™ - SM 9221 (cat# 576A, lot# P342-083A)

TNI Analyte Code

	732	514	216
	249	326	281
	Not Reported	Not Reported	Not Reported
	14.1 - 4400	34.0 - 3120	58.5 - 1350
	249	326	281
07£ 000m)			
ו (כמנוד כו כה, וכנוד ו	MPN/100mL	MPN/100mL	MPN/100mL
material complimation and series of the coop, total off coop,	2500 Total Coliform (MPN-Multiple Tube)	2530 Fecal Coliform (MPN-Multiple Tube)	2525 E.coli (MPN-Multiple Tube)
ייייייייייייייייייייייייייייייייייייייי	Total Colife	Fecal Colif	E.coli (MPI
	2500	2530	2525

All analytes except for 1,1-Biphenyl, 1,2-Diphenylhydrazine, 1,3-Dinitrobenzene, 2,3-Dichloroaniline, Acetophenone, Atrazine, Azobenzene, Benzaldehyde, Caprolactam, n-Decane and n-Octadecane in the Base/Neutrals, catalog # 833, are included in ERA's A2LA accreditation. Lab Code 1539.01.

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

Study #: WP-342

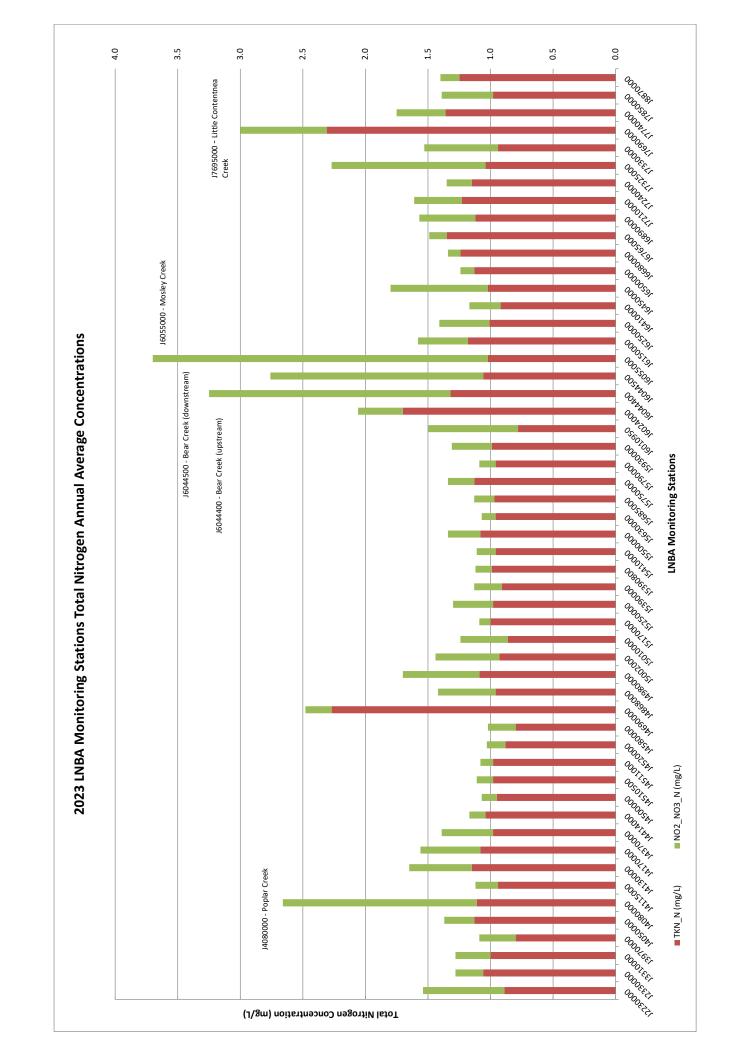
Page 11 of 11

CERTIFICATE OF EXCELLENCE

In recognition of the quality of your laboratory in proficiency testing for

WP-342

Waypoint Analytical - Greenville


is issued this certificate of achievement by ERA. This laboratory has been recognized as a Laboratory of Excellence for achieving 100% acceptable data in this study which included 1017 participating laboratories. This achievement is a demonstration of the superior quality of the laboratory in evaluation of the standards listed below.

Minerals Hd

Section IV

Statistical Analysis of Sampling Data

Station J2230000 Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest *Stream Class*: C NSW

Sub-Basin: 03020201 *Lattitude:* 35.9182 **Longitude:** -78.5348 County: Wake

County. Wake	Sub-Busin. 03020201			Luttude: 55.9162 Longitude: -76.55			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.0	26.2	18.3
DO (mg/l)	17	N/A	4	0	6.3	11.4	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.2	7.5	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	139	111
** Fecal Coliform (/100 mls)	12	N/A	400	7	66	4,800	441
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	34.0	9.9
Turbidity (NTU)	12	N/A	50	0	3.7	50.0	14.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.58	0.18
TKN_N (mg/l)	12	0	N/A	N/A	0.50	1.77	0.89
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.40	0.84	0.65
TP (mg/l)	12	1	N/A	N/A	0.02	1.89	0.24
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J2330000 Stream Class: CNSW Neuse River at SR 2215 (Buffalo Road) near Neuse

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8479 **Longitude:** -78.5302

County. Wake	Sub-Busin. 03020201			Luttude. 55.0479 Lo			nguale10.55	
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.9	29.9	20.1	
DO (mg/l)	17	N/A	4	0	5.2	11.3	7.6	
*** pH (SU)	17	N/A	6 to 9	0	6.5	7.6	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	54	133	102	
** Fecal Coliform (/100 mls)	12	N/A	400	0	13	250	64	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.7	31.0	11.9	
Turbidity (NTU)	12	N/A	50	0	5.1	21.0	12.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.07	0.54	0.18	
TKN_N (mg/l)	12	0	N/A	N/A	0.49	1.44	1.06	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.47	0.22	
TP (mg/l)	12	0	N/A	N/A	0.02	0.16	0.06	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3310000 Stream Class: CNSW Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8041 **Longitude:** -78.6081

County: Wake	Sub-Basin: 03020201			Lattitude: 35.8041			Longitude: -78.60	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.6	29.0	19.6	
DO (mg/l)	17	N/A	4	0	4.3	11.6	7.5	
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.9	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	58	276	154	
** Fecal Coliform (/100 mls)	12	N/A	400	6	82	800	291	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.0	27.0	8.1	
Turbidity (NTU)	12	N/A	50	0	5.1	37.0	14.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.26	0.13	
TKN_N (mg/l)	12	0	N/A	N/A	0.31	1.86	1.00	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.20	0.54	0.28	
TP (mg/l)	12	2	N/A	N/A	0.02	0.47	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3970000 Walnut Creek at SR 2551 (Barwell Road) near Raleigh Stream Class: CNSW

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.7493 **Longitude:** -78.5345

County: Wake	200	Sho Bushii GGGZGZGT			200000000000000000000000000000000000000			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.9	27.2	18.7	
DO (mg/l)	17	N/A	4	0	6.0	9.8	7.9	
*** pH (SU)	17	N/A	6 to 9	0	6.5	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	76	191	125	
** Fecal Coliform (/100 mls)	12	N/A	400	3	64	818	210	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	49.0	10.4	
Turbidity (NTU)	12	N/A	50	1	6.3	70.0	16.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.59	0.18	
TKN_N (mg/l)	12	0	N/A	N/A	0.48	1.41	0.80	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.17	0.40	0.29	
TP (mg/l)	12	1	N/A	N/A	0.02	2.32	0.24	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4050000 Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh *Stream Class:* C NSW

Longitude: -78.5139 **Sub-Basin:** 03020201 *Lattitude*: 35.7266 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7266 Lo			igitude: - 78.51	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.1	29.9	19.7	
DO (mg/l)	17	N/A	4	0	5.7	10.1	7.6	
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	84	136	113	
** Fecal Coliform (/100 mls)	12	N/A	400	3	26	864	159	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.2	39.0	13.4	
Turbidity (NTU)	12	N/A	50	0	5.7	45.0	15.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.23	0.11	
TKN_N (mg/l)	12	0	N/A	N/A	0.59	2.00	1.13	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.07	0.35	0.24	
TP (mg/l)	12	2	N/A	N/A	0.02	0.13	0.06	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4080000 Stream Class: CNSW Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale

Sub-Basin: 03020201 **Lattitude: 35.7309 Longitude:** -78.4776 County: Wake N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 6.7 26.0 17.4 DO (mg/l) 17 N/A 0 6.1 10.3 8.1 4 *** pH (SU) 17 N/A 6 to 9 0 6.2 7.4 N/A Conductivity (umhos/cm) 17 0 N/A N/A 55 242 138 ** Fecal Coliform (/100 mls) 5 120 773 433 9 N/A 400 9 0 N/A 5.2 40.0 13.0 Suspended Residue (mg/l) N/A 9 N/A 50 0 6.3 50.0 16.6 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 9 0 N/A N/A 0.07 0.46 0.20 9 0 N/A N/A 0.78 1.92 1.11 $TKN_N (mg/l)$ 9 0 N/A N/A 0.81 2.64 1.55 NO2_NO3_N (mg/l) 9 0 N/A N/A 0.09 0.52 0.26 TP (mg/l)2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1.000 0 Iron (ug/l) 0 N/A N/A Manganese (ug/l) 0 Arsenic (ug/l) 0 0 10 0 0 0 0.012 N/A

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

Mercury (ug/l)

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4115000 Stream Class: CNSW Marks Creek @ Neuse River Trail near Archers Lodge

Sub-Basin: 03020201 Lattitude: 35.693264 Longitude: -78.43869 County: Johnston

County: Commoton	Sub Busin 00020201 Bunging						
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	5.5	25.5	17.5
DO (mg/l)	16	N/A	4	0	6.2	10.9	8.1
*** pH (SU)	16	N/A	6 to 9	0	6.2	7.4	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	53	96	82
** Fecal Coliform (/100 mls)	10	N/A	400	6	220	9,100	619
Suspended Residue (mg/l)	10	0	N/A	N/A	2.8	32.0	12.4
Turbidity (NTU)	10	N/A	50	0	4.7	45.0	16.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	10	0	N/A	N/A	0.03	0.24	0.13
TKN_N (mg/l)	10	0	N/A	N/A	0.28	3.09	0.94
NO2_NO3_N (mg/l)	10	0	N/A	N/A	0.13	0.24	0.18
TP (mg/l)	10	2	N/A	N/A	0.02	0.11	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4130000 Stream Class: WS-V NSW Neuse River @ SR 1700 (Covered Bridge Road) near Archer's

Sub-Basin: 03020201 County: Johnston **Lattitude:** 35.6749 Longitude: -78.4364

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	9.3	28.5	19.7
DO (mg/l)	17	N/A	4	0	5.2	9.8	7.5
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	97	278	182
** Fecal Coliform (/100 mls)	12	N/A	400	2	42	864	131
Suspended Residue (mg/l)	12	0	N/A	N/A	2.8	40.0	14.1
Turbidity (NTU)	12	N/A	50	0	3.9	33.0	15.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.23	0.12
TKN_N (mg/l)	12	0	N/A	N/A	0.55	3.46	1.15
NO2_NO3_N (mg/l)	12	0	10	0	0.12	0.90	0.50
TP (mg/l)	12	0	N/A	N/A	0.04	0.49	0.26
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4170000 Neuse River @ at NC 42E of Clayton Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude:** 35.6473 **Longitude:** -78.4056 County: Johnston

County: Commoton	211	o Dustit. o	.0020201	Distributed 66.6110 Dongstated 16.10				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.5	28.0	19.4	
DO (mg/l)	17	N/A	4	0	5.5	9.7	7.5	
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	86	267	179	
** Fecal Coliform (/100 mls)	12	N/A	400	2	33	818	122	
Suspended Residue (mg/l)	12	0	N/A	N/A	4.5	39.0	15.6	
Turbidity (NTU)	12	N/A	50	0	3.8	45.0	17.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.20	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.29	2.31	1.08	
NO2_NO3_N (mg/l)	12	0	10	0	0.15	0.75	0.48	
TP (mg/l)	12	0	N/A	N/A	0.06	0.38	0.20	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4370000 Stream Class: WS-IV NSW Neuse River at US 70 Business @ Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5128 County: Johnston **Longitude:** -78.3498

County. Johnston	Sub-Busin. 03020201			Luminue. 55.5126 Longitude76.54				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.0	27.9	19.7	
DO (mg/l)	17	N/A	4	0	5.7	10.5	7.7	
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.6	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	89	312	189	
** Fecal Coliform (/100 mls)	12	N/A	400	3	31	6,000	215	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	183.0	33.5	
Turbidity (NTU)	12	N/A	50	1	2.5	160.0	29.9	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.34	0.16	
TKN_N (mg/l)	12	0	N/A	N/A	0.62	1.59	0.98	
NO2_NO3_N (mg/l)	12	0	10	0	0.09	0.63	0.41	
TP (mg/l)	12	0	N/A	N/A	0.10	0.35	0.21	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4414000 Stream Class: WS-III NSW Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia

Longitude: -78.7527 County: Wake Sub-Rasin: 03020201 Lattitude: 35 7187

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7187 Lon			gitude: - 78.75		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	7.7	27.6	18.6		
DO (mg/l)	17	N/A	4	0	4.0	10.3	7.4		
*** pH (SU)	17	N/A	6 to 9	0	6.5	8.0	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	60	158	96		
** Fecal Coliform (/100 mls)	12	N/A	400	3	50	6,000	278		
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	54.0	11.5		
Turbidity (NTU)	12	N/A	50	1	6.1	60.0	16.8		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.39	0.14		
TKN_N (mg/l)	12	0	N/A	N/A	0.45	2.55	1.04		
NO2_NO3_N (mg/l)	12	1	10	0	0.02	0.27	0.13		
TP (mg/l)	12	0	N/A	N/A	0.05	0.28	0.12		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	25	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	200	0					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4500000 Stream Class: CNSW Swift Creek @ Indian Creek former discharge location near

Garner, N.C.

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6476 **Longitude:** -78.6041

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	7.8	28.8	18.9
DO (mg/l)	16	N/A	4	0	4.0	10.4	7.0
*** pH (SU)	16	N/A	6 to 9	0	6.5	7.2	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	69	91	82
** Fecal Coliform (/100 mls)	12	N/A	400	3	21	1,100	158
Suspended Residue (mg/l)	12	0	N/A	N/A	6.3	119.0	27.8
Turbidity (NTU)	12	N/A	50	0	12.0	36.0	20.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.52	0.19
TKN_N (mg/l)	12	0	N/A	N/A	0.42	1.67	0.95
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.21	0.12
TP (mg/l)	12	0	N/A	N/A	0.04	0.14	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4510500 Stream Class: CNSW Swift Creek at SR 1525, Cornwallis Road near Clayton

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5999 Longitude: -78.5356

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5999 Longitude: -78.5				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.5	27.2	18.8	
DO (mg/l)	17	N/A	4	0	4.3	10.0	7.7	
*** pH (SU)	17	N/A	6 to 9	0	6.8	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	62	94	83	
** Fecal Coliform (/100 mls)	12	N/A	400	2	64	846	169	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	47.0	14.8	
Turbidity (NTU)	12	N/A	50	1	5.2	55.0	19.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.51	0.19	
TKN_N (mg/l)	12	0	N/A	N/A	0.40	2.51	0.98	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.06	0.22	0.13	
TP (mg/l)	12	0	N/A	N/A	0.04	0.16	0.09	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4511000 Stream Class: CNSW White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.

Sub-Basin: 03020201 **Lattitude:** 35.6176 County: Johnston **Longitude:** -78.5281

County. Johnston	Sub-Dusin. 03020201			Latitude. 55.0170 Longitude76.52				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.8	29.1	20.6	
DO (mg/l)	17	N/A	4	1	3.3	11.0	7.3	
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.4	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	50	80	66	
** Fecal Coliform (/100 mls)	12	N/A	400	2	3	8,300	49	
Suspended Residue (mg/l)	12	0	N/A	N/A	4.1	47.0	13.8	
Turbidity (NTU)	12	N/A	50	2	6.6	85.0	23.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.29	0.14	
TKN_N (mg/l)	12	0	N/A	N/A	0.45	1.78	0.98	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.26	0.10	
TP (mg/l)	12	0	N/A	N/A	0.04	0.18	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4520000 Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C. Stream Class: C NSW

Longitude: -78.46 County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.5515

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5515 Longitude			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.6	26.8	18.5
DO (mg/l)	17	N/A	4	0	6.0	11.0	7.9
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.8	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	61	101	83
** Fecal Coliform (/100 mls)	12	N/A	400	3	58	4,100	291
Suspended Residue (mg/l)	12	5	N/A	N/A	2.5	96.0	21.6
Turbidity (NTU)	12	N/A	50	2	3.0	120.0	25.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.26	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.33	1.67	0.88
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.25	0.15
TP (mg/l)	12	0	N/A	N/A	0.03	0.28	0.10
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4580000 Stream Class: CNSW Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston

County Airport

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5442 Longitude: -78.397

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.8	26.4	17.8
DO (mg/l)	17	N/A	4	0	6.0	10.9	8.0
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	51	164	93
** Fecal Coliform (/100 mls)	12	N/A	400	1	54	4,800	153
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	100.0	14.5
Turbidity (NTU)	12	N/A	50	1	3.0	100.0	18.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.24	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.39	1.55	0.80
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.03	0.32	0.22
TP (mg/l)	12	1	N/A	N/A	0.02	0.15	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4690000 Stream Class: CNSW Middle Creek @ SR 1152 (Holly Springs Road) near Holly

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6609 **Longitude:** -78.8042

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
							Ü
Temperature (C)	1	N/A	N/A	N/A	15.7	15.7	15.7
DO(mg/l)	1	N/A	4	0	9.3	9.3	9.3
*** pH (SU)	1	N/A	6 to 9	0	6.9	6.9	N/A
Conductivity (umhos/cm)	1	0	N/A	N/A	81	81	81
** Fecal Coliform (/100 mls)	1	N/A	400	1	2,900	2,900	2,900
Suspended Residue (mg/l)	1	0	N/A	N/A	74.0	74.0	74.0
Turbidity (NTU)	1	N/A	50	1	110.0	110.0	110.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	1	0	N/A	N/A	0.07	0.07	0.07
TKN_N (mg/l)	1	0	N/A	N/A	2.27	2.27	2.27
NO2_NO3_N (mg/l)	1	0	N/A	N/A	0.21	0.21	0.21
TP (mg/l)	1	0	N/A	N/A	0.25	0.25	0.25
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4868000 Stream Class: CNSW Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks

Longitude: -78.7279 County: Wake Sub-Rasin: 03020201 Lattitude: 35 6356

County: Wake	Sub-Basin: 03020201			Lo	356 <i>Long</i>	gitude: - 78.72		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.2	27.3	19.4	
DO (mg/l)	17	N/A	4	0	5.4	10.3	7.4	
*** pH (SU)	17	N/A	6 to 9	0	6.7	8.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	89	388	229	
** Fecal Coliform (/100 mls)	12	N/A	400	4	52	2,400	268	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	59.0	17.1	
Turbidity (NTU)	12	N/A	50	1	2.8	80.0	22.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.32	0.13	
TKN_N (mg/l)	12	0	N/A	N/A	0.65	1.51	0.96	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.21	0.80	0.46	
TP (mg/l)	12	0	N/A	N/A	0.08	0.46	0.18	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4980000 Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs Stream Class: C NSW

Longitude: -78.6866 **Sub-Basin:** 03020201 *Lattitude*: 35.6091 County: Wake

County: Wake	Sub-Basin: 03020201			L	<i>itude: -</i> 78.68		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.1	26.9	18.9
DO (mg/l)	17	N/A	4	0	4.2	9.7	7.7
*** pH (SU)	17	N/A	6 to 9	1	5.8	7.5	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	87	387	223
** Fecal Coliform (/100 mls)	12	N/A	400	3	100	4,600	296
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	98.0	28.9
Turbidity (NTU)	12	N/A	50	2	4.0	65.0	26.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.29	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.55	1.85	1.09
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.20	1.02	0.61
TP (mg/l)	12	0	N/A	N/A	0.08	0.54	0.19
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5002000 Stream Class: CNSW Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson

Lattitude: 35.5626 Sub-Basin: 03020201 **Longitude:** -78.5756 County: Johnston N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 7.1 26.5 18.4 DO (mg/l) 17 N/A 1 2.8 11.2 7.8 4 *** pH (SU) 17 N/A 6 to 9 0 6.7 7.4 N/A Conductivity (umhos/cm) 17 0 N/A N/A 71 300 173 ** Fecal Coliform (/100 mls) 3 1,900 244 12 N/A 400 68 1 N/A 2.5 49.0 17.5 Suspended Residue (mg/l) 12 N/A 12 N/A 50 2 3.7 65.0 23.1 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 N/A N/A 0.02 0.73 0.22 12 0 N/A N/A 0.44 1.92 0.93 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 N/A N/A 0.21 1.09 0.51 12 12 0 N/A N/A 0.04 0.26 0.11 TP (mg/l)2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1.000 0 Iron (ug/l) 0 Manganese (ug/l) 0 N/A N/A Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5010000 Stream Class: CNSW Middle Creek @ NC 210 near Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5075 **Longitude:** -78.4013 County: Johnston

Country: Commotion	211	o Busine o		2,		20118	70.10
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.8	26.1	17.8
DO (mg/l)	17	N/A	4	0	6.3	11.0	8.1
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	77	279	156
** Fecal Coliform (/100 mls)	12	N/A	400	1	54	4,800	121
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	61.0	11.5
Turbidity (NTU)	12	N/A	50	1	4.2	75.0	18.7
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.50	0.25
TKN_N (mg/l)	12	0	N/A	N/A	0.47	1.28	0.86
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.28	0.50	0.38
TP (mg/l)	12	0	N/A	N/A	0.09	0.89	0.19
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5170000 Stream Class: CNSW Black Creek @ SR 1162 (Black Creek Road) near Four Oaks

Sub-Basin: 03020201 County: Johnston *Lattitude:* 35.46925 **Longitude:** -78.45681

County: Johnston	Sub-Busin: 03020201			Lattitude: 35.46925 Longitude: -78.45				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.9	25.9	17.8	
DO (mg/l)	17	N/A	4	4	1.8	10.6	5.8	
*** pH (SU)	17	N/A	6 to 9	2	5.9	7.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	62	194	93	
** Fecal Coliform (/100 mls)	12	N/A	400	1	25	5,200	78	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.0	23.0	6.1	
Turbidity (NTU)	12	N/A	50	0	8.2	34.0	12.6	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.07	0.62	0.21	
TKN_N (mg/l)	12	0	N/A	N/A	0.56	1.60	1.00	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.27	0.09	
TP (mg/l)	12	0	N/A	N/A	0.04	0.25	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5250000 Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill Stream Class: WS-IV NSW

Longitude: -78.1962 County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.3741

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.3741 Lot			gitude: - 78.19		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	8.1	28.4	19.7		
DO (mg/l)	17	N/A	4	1	3.5	10.5	7.5		
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.6	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	94	312	181		
** Fecal Coliform (/100 mls)	12	N/A	400	1	30	3,500	97		
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	143.0	33.6		
Turbidity (NTU)	12	N/A	50	1	5.5	100.0	28.7		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.30	0.18		
TKN_N (mg/l)	12	0	N/A	N/A	0.55	1.84	0.98		
NO2_NO3_N (mg/l)	12	0	10	0	0.16	0.40	0.32		
TP (mg/l)	12	0	N/A	N/A	0.11	0.90	0.27		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	25	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	200	0					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390000 Stream Class: CNSW Hannah Creek @ SR 1158 (Allens Crossroads Drive) near

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.3868 Longitude: -78.511

			- A	N>Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.3	25.6	17.7
DO (mg/l)	17	N/A	4	3	3.0	10.5	6.1
*** pH (SU)	17	N/A	6 to 9	8	4.3	7.8	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	78	139	104
** Fecal Coliform (/100 mls)	12	N/A	400	2	28	1,100	117
Suspended Residue (mg/l)	12	0	N/A	N/A	3.0	14.0	7.4
Turbidity (NTU)	12	N/A	50	0	7.2	26.0	16.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.10	0.50	0.23
TKN_N (mg/l)	12	0	N/A	N/A	0.44	2.53	0.91
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.05	0.41	0.22
TP (mg/l)	12	1	N/A	N/A	0.02	0.10	0.05
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390800 Hannah Creek @ SR 1227 (Ivey Road) near Benson Stream Class: CNSW

Sub-Basin: 03020201 **Lattitude:** 35.4025 County: Johnston **Longitude:** -78.4952

County. Johnston	Suo-Dusin. 03020201			Luntune. 33.4023 Longitude70.9			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.5	26.2	18.2
DO (mg/l)	17	N/A	4	7	2.1	10.2	5.0
*** pH (SU)	17	N/A	6 to 9	2	5.0	7.0	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	72	260	150
** Fecal Coliform (/100 mls)	12	N/A	400	1	18	2,000	64
Suspended Residue (mg/l)	12	0	N/A	N/A	3.3	13.0	7.1
Turbidity (NTU)	12	N/A	50	0	7.0	26.0	12.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.24	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.56	1.63	0.99
NO2_NO3_N (mg/l)	12	3	N/A	N/A	0.02	0.42	0.13
TP (mg/l)	12	0	N/A	N/A	0.04	0.63	0.27
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5410000 Stream Class: CNSW Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill

Sub-Basin: 03020201 **Lattitude:** 35.342 **Longitude:** -78.2162 County: Johnston N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 8.0 26.5 18.4 DO (mg/l) 17 N/A 0 5.1 9.9 6.8 4 *** pH (SU) 17 N/A 6 to 9 2 5.3 7.0 N/A Conductivity (umhos/cm) 17 0 N/A N/A 73 143 103 ** Fecal Coliform (/100 mls) 1 28 6,300 122 12 N/A 400 4 N/A 2.5 26.0 6.2 Suspended Residue (mg/l) 12 N/A 12 N/A 50 0 4.4 21.0 10.5 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 0 N/A N/A 0.03 0.29 0.15 12 0 N/A N/A 0.50 1.74 0.96 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 N/A N/A 0.02 0.45 0.15 12 12 N/A N/A 0.02 0.12 0.07 TP (mg/l)1 2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1,000 0 Iron (ug/l) 0 N/A Manganese (ug/l) 0 N/A

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

10

0.012

0

N/A

0

0

0

0

Arsenic (ug/l)

Mercury (ug/l)

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5500000 Falling Creek @ SR 1219 (Old Grantham Road) near Grantham Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude: 35.3224 Longitude:** -78.1282 County: Wayne N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 6.5 25.1 17.6 DO (mg/l) 17 N/A 4 2.6 9.9 5.8 4 *** pH (SU) 17 N/A 6 to 9 4 5.8 6.8 N/A Conductivity (umhos/cm) 17 0 N/A N/A 84 195 134 ** Fecal Coliform (/100 mls) 2 15 3,500 103 12 N/A 400 7 N/A 2.5 28.0 5.4 Suspended Residue (mg/l) 12 N/A 12 N/A 50 0 2.8 45.0 9.1 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 0 N/A N/A 0.09 0.52 0.24 12 0 N/A N/A 0.57 1.44 1.08 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 10 0 0.03 0.81 0.26 12 12 0 N/A N/A 0.03 0.50 0.13 TP (mg/l)2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 25 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1,000 0 Iron (ug/l) 0 200 0 Manganese (ug/l) 0 Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5630000 Little River @ SR 2320, Riley Road near Zebulon **Stream Class:** HQW NSW

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8375 Longitude: -78.3599

County. Wake	Sub-Dusin. 03020201			Luttitute. 55.6575 Longitute76.5			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	15	N/A	N/A	N/A	8.1	27.0	19.4
DO (mg/l)	15	N/A	4	1	3.8	11.1	6.6
*** pH (SU)	15	N/A	6 to 9	1	5.7	7.1	N/A
Conductivity (umhos/cm)	15	0	N/A	N/A	61	136	88
** Fecal Coliform (/100 mls)	10	N/A	400	2	33	530	102
Suspended Residue (mg/l)	10	0	N/A	N/A	2.6	12.0	6.0
Turbidity (NTU)	10	N/A	50	0	2.8	22.0	9.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	10	0	N/A	N/A	0.05	0.30	0.13
TKN_N (mg/l)	10	0	N/A	N/A	0.54	1.52	0.96
NO2_NO3_N (mg/l)	10	0	10	0	0.02	0.20	0.11
TP (mg/l)	10	0	N/A	N/A	0.03	0.14	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5685000 Stream Class: WS-V NSW Little River at Weaver Road near Bagley

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5791 **Longitude:** -78.1723

County: Johnston	Sub-Basin: 03020201			L	<i>ituae: -</i> 78.17		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.1	26.7	18.3
DO (mg/l)	17	N/A	4	0	5.1	11.1	7.3
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	58	107	78
** Fecal Coliform (/100 mls)	12	N/A	400	2	40	773	124
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	27.0	7.1
Turbidity (NTU)	12	N/A	50	0	5.0	40.0	12.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.55	0.13
TKN_N (mg/l)	12	0	N/A	N/A	0.37	1.97	0.97
NO2_NO3_N (mg/l)	12	0	10	0	0.05	0.28	0.16
TP (mg/l)	12	0	N/A	N/A	0.03	0.11	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5750000 Little River at SR 2339 (Bagley Road) near Lowell Mill Stream Class: WS-V NSW

Sub-Basin: 03020201 *Lattitude*: 35.5613 County: Johnston **Longitude:** -78.1594

Country: Commoton	~	o Busin. c	.0020201	20.0010 20.0010 10.10				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.8	26.6	18.3	
DO (mg/l)	17	N/A	4	0	5.1	13.0	7.5	
*** pH (SU)	17	N/A	6 to 9	1	5.4	7.8	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	50	153	89	
** Fecal Coliform (/100 mls)	12	N/A	400	2	38	618	113	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	27.0	8.4	
Turbidity (NTU)	12	N/A	50	0	4.3	31.0	13.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.19	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.29	2.08	1.13	
NO2_NO3_N (mg/l)	12	0	10	0	0.05	0.30	0.21	
TP (mg/l)	12	0	N/A	N/A	0.04	0.20	0.09	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5790000 Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C. Stream Class: C NSW

Longitude: -78.7697 **Sub-Basin:** 03020201 *Lattitude*: 35.7697 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7697 Longitude: -78.			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.3	26.2	17.6
DO (mg/l)	17	N/A	4	0	4.5	11.0	7.7
*** pH (SU)	17	N/A	6 to 9	1	5.8	7.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	50	146	78
** Fecal Coliform (/100 mls)	12	N/A	400	2	76	2,100	248
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	13.0	8.4
Turbidity (NTU)	12	N/A	50	0	5.1	26.0	10.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.19	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.48	1.70	0.96
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.07	0.35	0.13
TP (mg/l)	12	1	N/A	N/A	0.02	0.08	0.05
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5930000 Little River @ US 581 near Cherry Hospital Stream Class: CNSW

County: Wayne **Sub-Basin:** 03020201 *Lattitude*: 35.393 **Longitude:** -78.0258

County: Wayne	Sui	Sub-Basin: 03020201			Lattituae: 35.393 Long		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.9	27.7	19.4
DO (mg/l)	17	N/A	4	0	4.8	10.2	7.3
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	55	166	111
** Fecal Coliform (/100 mls)	12	N/A	400	3	44	6,800	193
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	54.0	13.4
Turbidity (NTU)	12	N/A	50	0	3.4	50.0	14.6
Chlorophyll-a (ug/l)	0	0	40	0			
$NH3_N (mg/l)$	12	0	N/A	N/A	0.06	0.60	0.23
TKN_N (mg/l)	12	0	N/A	N/A	0.56	1.35	0.99
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.17	0.52	0.32
TP (mg/l)	12	0	N/A	N/A	0.04	0.26	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6010950 Stream Class: CNSW Walnut Creek @ SR 1730 (Saint Johns Church Road) near

Walnut Creek

County: Wayne **Sub-Basin:** 03020202 **Lattitude:** 35.2817 **Longitude:** -77.8686

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.7	27.4	19.1
DO (mg/l)	17	N/A	4	0	4.8	10.5	7.0
*** pH (SU)	17	N/A	6 to 9	4	5.2	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	76	194	100
** Fecal Coliform (/100 mls)	12	N/A	400	0	2	400	50
Suspended Residue (mg/l)	12	6	N/A	N/A	2.5	25.0	5.5
Turbidity (NTU)	12	N/A	50	0	1.3	11.0	4.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.18	0.13
TKN_N (mg/l)	12	0	N/A	N/A	0.40	1.43	0.78
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.15	1.26	0.72
TP (mg/l)	12	3	N/A	N/A	0.02	0.10	0.05
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6024000 Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs Stream Class: C NSW

Longitude: -77.846 **Sub-Basin:** 03020202 *Lattitude*: 35.229 County: Wayne

County: Wayne	Su	Sub-Basin: 03020202			attītude: 35.2	29 <i>Long</i>	Longitude: -77.84	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.8	29.7	19.7	
DO (mg/l)	17	N/A	4	0	4.7	11.8	7.6	
*** pH (SU)	17	N/A	6 to 9	0	6.2	8.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	71	280	148	
** Fecal Coliform (/100 mls)	12	N/A	400	3	15	4,100	109	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	1,450.0	136.5	
Turbidity (NTU)	12	N/A	50	1	3.4	70.0	25.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.32	0.16	
TKN_N (mg/l)	12	0	N/A	N/A	0.62	9.03	1.70	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.17	0.53	0.36	
TP (mg/l)	12	1	N/A	N/A	0.02	5.38	0.57	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044400 Stream Class: C Sw NSW Bear Creek at SR 1603, Washington Street near LaGrange

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.3137 **Longitude:** -77.8153

County: Lenoir	Sub-Basin: 03020202			Lammae: 35.3137			Longituae: -77.81	
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.4	25.6	17.8	
DO (mg/l)	17	N/A	4	0	6.2	11.1	8.1	
*** pH (SU)	17	N/A	6 to 9	3	5.8	6.7	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	93	141	123	
** Fecal Coliform (/100 mls)	12	N/A	400	3	26	746	179	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	36.0	12.3	
Turbidity (NTU)	12	N/A	50	0	3.4	29.0	12.6	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.25	0.16	
TKN_N (mg/l)	12	0	N/A	N/A	0.68	2.09	1.32	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.85	2.68	1.93	
TP (mg/l)	12	0	N/A	N/A	0.04	0.54	0.17	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044500 Bear Creek @ SR 1311 (Bear Creek Road) near Kinston Stream Class: WS-IV Sw N

Sub-Basin: 03020202 County: Lenoir **Lattitude:** 35.2489 **Longitude:** -77.7843

Bub Busin: 00020202			Luttitude. 55.2409 Longitude11.16				
N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
17	N/A	N/A	N/A	7.2	25.8	17.9	
17	N/A	4	0	5.7	11.1	8.1	
17	N/A	6 to 9	1	5.9	7.5	N/A	
17	0	N/A	N/A	77	180	115	
12	N/A	400	2	25	900	140	
12	3	N/A	N/A	2.5	24.0	8.7	
12	N/A	50	0	1.6	26.0	10.2	
0	0	40	0				
12	0	N/A	N/A	0.09	0.44	0.19	
12	0	N/A	N/A	0.51	1.97	1.06	
12	0	10	0	0.77	2.83	1.70	
12	0	N/A	N/A	0.05	0.41	0.17	
0	0	2	0				
0	0	50	0				
0	0	7	0				
0	0	25	0				
0	0	25	0				
0	0	50	0				
0	0	87	0				
0	0	1,000	0				
0	0	200	0				
0	0	10	0				
0	0	0.012	N/A				
	N 17 17 17 17 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0	N N <rl 0="" 0<="" 12="" 17="" 3="" a="" n="" o="" td=""><td>17 N/A N/A 17 N/A 4 17 0 N/A 12 N/A 400 12 3 N/A 12 N/A 50 0 0 40 12 0 N/A 12 0 N/A 12 0 N/A 12 0 N/A 0 0 2 0 0 50 0 0 7 0 0 25 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 1,000 0 0 200 0 0 200 0 0 10</td><td>N N N Ref N > Ref 17 N/A N/A N/A 17 N/A 4 0 17 N/A 6 to 9 1 17 0 N/A N/A 12 N/A 400 2 12 3 N/A N/A 12 N/A 50 0 0 0 40 0 12 0 N/A N/A 0 0 2 0 0 0 7 0 0 0 25 0 0 0 50 0 0 0 50 0 0 0<td>N N<rl< th=""> Ref or N N > Ref N Minimum N 17 N/A N/A N/A 7.2 17 N/A 4 0 5.7 17 N/A 6 to 9 1 5.9 17 0 N/A N/A 77 12 N/A 400 2 25 12 3 N/A N/A 2.5 12 3 N/A N/A 2.5 12 N/A 50 0 1.6 0 0 40 0 0 12 0 N/A N/A 0.09 12 0 N/A N/A 0.51 12 0 N/A N/A 0.05 0 0 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0</rl<></td><td>N N Ref or N N Minimum Maximum 17 N/A N/A N/A 7.2 25.8 17 N/A 4 0 5.7 11.1 17 N/A 6 to 9 1 5.9 7.5 17 0 N/A N/A 77 180 12 N/A 400 2 25 900 12 N/A 400 2 25 900 12 N/A 400 2 25 900 12 N/A 50 0 1.6 26.0 0 0 40 0 0 26.0 0 0 N/A N/A 0.09 0.44 12 0 N/A N/A 0.51 1.97 12 0 N/A N/A 0.05 0.41 0 0 2 0 0 0 0 7</td></td></rl>	17 N/A N/A 17 N/A 4 17 0 N/A 12 N/A 400 12 3 N/A 12 N/A 50 0 0 40 12 0 N/A 12 0 N/A 12 0 N/A 12 0 N/A 0 0 2 0 0 50 0 0 7 0 0 25 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 1,000 0 0 200 0 0 200 0 0 10	N N N Ref N > Ref 17 N/A N/A N/A 17 N/A 4 0 17 N/A 6 to 9 1 17 0 N/A N/A 12 N/A 400 2 12 3 N/A N/A 12 N/A 50 0 0 0 40 0 12 0 N/A N/A 0 0 2 0 0 0 7 0 0 0 25 0 0 0 50 0 0 0 50 0 0 0 <td>N N<rl< th=""> Ref or N N > Ref N Minimum N 17 N/A N/A N/A 7.2 17 N/A 4 0 5.7 17 N/A 6 to 9 1 5.9 17 0 N/A N/A 77 12 N/A 400 2 25 12 3 N/A N/A 2.5 12 3 N/A N/A 2.5 12 N/A 50 0 1.6 0 0 40 0 0 12 0 N/A N/A 0.09 12 0 N/A N/A 0.51 12 0 N/A N/A 0.05 0 0 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0</rl<></td> <td>N N Ref or N N Minimum Maximum 17 N/A N/A N/A 7.2 25.8 17 N/A 4 0 5.7 11.1 17 N/A 6 to 9 1 5.9 7.5 17 0 N/A N/A 77 180 12 N/A 400 2 25 900 12 N/A 400 2 25 900 12 N/A 400 2 25 900 12 N/A 50 0 1.6 26.0 0 0 40 0 0 26.0 0 0 N/A N/A 0.09 0.44 12 0 N/A N/A 0.51 1.97 12 0 N/A N/A 0.05 0.41 0 0 2 0 0 0 0 7</td>	N N <rl< th=""> Ref or N N > Ref N Minimum N 17 N/A N/A N/A 7.2 17 N/A 4 0 5.7 17 N/A 6 to 9 1 5.9 17 0 N/A N/A 77 12 N/A 400 2 25 12 3 N/A N/A 2.5 12 3 N/A N/A 2.5 12 N/A 50 0 1.6 0 0 40 0 0 12 0 N/A N/A 0.09 12 0 N/A N/A 0.51 12 0 N/A N/A 0.05 0 0 2 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0</rl<>	N N Ref or N N Minimum Maximum 17 N/A N/A N/A 7.2 25.8 17 N/A 4 0 5.7 11.1 17 N/A 6 to 9 1 5.9 7.5 17 0 N/A N/A 77 180 12 N/A 400 2 25 900 12 N/A 400 2 25 900 12 N/A 400 2 25 900 12 N/A 50 0 1.6 26.0 0 0 40 0 0 26.0 0 0 N/A N/A 0.09 0.44 12 0 N/A N/A 0.51 1.97 12 0 N/A N/A 0.05 0.41 0 0 2 0 0 0 0 7	

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6055000 Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange Stream Class: C Sw NSW

Sub-Basin: 03020202 **Lattitude:** 35.3119 **Longitude:** -77.7313 County: Lenoir

County. Lenon	500-Dusin. 03020202			Luniume. 35.3119 Longitume11.13				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.0	24.3	17.4	
DO (mg/l)	17	N/A	4	0	5.9	10.8	8.0	
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.8	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	100	160	123	
** Fecal Coliform (/100 mls)	12	N/A	400	7	131	809	370	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	20.0	6.8	
Turbidity (NTU)	12	N/A	50	0	2.9	14.0	7.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.30	0.16	
TKN_N (mg/l)	12	0	N/A	N/A	0.68	1.59	1.02	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	1.79	3.47	2.68	
TP (mg/l)	12	1	N/A	N/A	0.02	0.30	0.14	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6150000 Stream Class: CNSW Neuse River @ NC 11 Bypass at Kinston

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.2587 **Longitude:** -77.5835

•						8	
				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.8	30.0	20.0
DO (mg/l)	17	N/A	4	0	5.9	12.0	8.0
*** pH (SU)	17	N/A	6 to 9	0	6.5	8.5	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	255	145
** Fecal Coliform (/100 mls)	12	N/A	400	1	10	1,200	73
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	59.0	23.6
Turbidity (NTU)	12	N/A	50	0	3.0	45.0	22.7
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.27	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.53	2.49	1.18
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.14	0.70	0.40
TP (mg/l)	12	0	N/A	N/A	0.03	0.59	0.19
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6250000 Neuse River @ NC 55 near Graingers Stream Class: CNSW

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.2957 **Longitude:** -77.4962

Country: Lonion	~	o Busin. c	0020202	Daniel Co. 2001 Donglinder 11.10				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.6	29.8	19.8	
DO (mg/l)	17	N/A	4	0	5.7	11.4	7.7	
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.9	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	77	258	156	
** Fecal Coliform (/100 mls)	12	N/A	400	1	16	900	82	
Suspended Residue (mg/l)	12	0	N/A	N/A	5.2	34.0	19.0	
Turbidity (NTU)	12	N/A	50	0	3.7	40.0	21.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.37	0.14	
TKN_N (mg/l)	12	0	N/A	N/A	0.48	1.52	1.01	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.20	0.68	0.40	
TP (mg/l)	12	0	N/A	N/A	0.02	0.28	0.14	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6410000 Little Creek @ NC 97 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 **Lattitude:** 35.8279 **Longitude:** -78.3025

County. Wake	Sui	Sub-Busin . 03020203			Lunuae. 55.0219 Longuale10.50				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	6.5	23.9	16.7		
DO (mg/l)	17	N/A	4	3	2.8	9.4	6.7		
*** pH (SU)	17	N/A	6 to 9	1	5.0	7.1	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	82	141	101		
** Fecal Coliform (/100 mls)	12	N/A	400	9	60	3,700	690		
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	17.0	6.9		
Turbidity (NTU)	12	N/A	50	0	6.4	23.0	10.7		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	0	N/A	N/A	0.09	0.31	0.14		
TKN_N (mg/l)	12	0	N/A	N/A	0.59	1.22	0.92		
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.11	0.53	0.25		
TP (mg/l)	12	1	N/A	N/A	0.02	0.24	0.10		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	88	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	N/A	N/A					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6450000 Little Creek @ NC 39 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 *Lattitude*: 35.8125 **Longitude:** -78.2681

Country: Wake	200	Dusiii.	0020200	2.		TEO LONG	70.20
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.4	25.8	18.4
DO (mg/l)	17	N/A	4	0	5.9	10.4	8.2
*** pH (SU)	17	N/A	6 to 9	0	6.5	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	102	574	310
** Fecal Coliform (/100 mls)	12	N/A	400	3	46	2,300	208
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	61.0	21.1
Turbidity (NTU)	12	N/A	50	2	3.5	100.0	28.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.28	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.56	2.32	1.02
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.39	1.07	0.78
TP (mg/l)	12	0	N/A	N/A	0.05	0.62	0.15
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6500000 Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner Stream Class: C NSW

Longitude: -78.1895 **Sub-Basin:** 03020203 *Lattitude*: 35.7301 County: Wilson

County: Wilson	Sub-Basin: 03020203			Lo	attītude: 35.7	301 <i>Long</i>	Longitude: -78.189	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.4	26.0	17.7	
DO (mg/l)	17	N/A	4	1	3.8	11.1	7.3	
*** pH (SU)	17	N/A	6 to 9	0	6.6	7.6	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	61	174	107	
** Fecal Coliform (/100 mls)	12	N/A	400	1	33	818	117	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.3	22.0	8.1	
Turbidity (NTU)	12	N/A	50	0	5.0	40.0	12.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.33	0.14	
TKN_N (mg/l)	12	0	N/A	N/A	0.69	2.24	1.13	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.20	0.11	
TP (mg/l)	12	0	N/A	N/A	0.05	0.15	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6680000 **Longitude:** -78.1597 County: Nash **Sub-Basin:** 03020203 *Lattitude*: 35.7519

County: Nash	Sub-Basin: 03020203			Lattitude: 35.7519 Longitude: -			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.4	26.8	18.0
DO (mg/l)	17	N/A	4	4	2.2	10.9	5.8
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.1	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	106	76
** Fecal Coliform (/100 mls)	12	N/A	400	1	31	2,100	80
Suspended Residue (mg/l)	12	0	N/A	N/A	2.9	27.0	9.8
Turbidity (NTU)	12	N/A	50	0	9.9	34.0	15.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.38	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.87	1.61	1.24
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.25	0.10
TP (mg/l)	12	0	N/A	N/A	0.02	0.12	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6765000 Stream Class: C Sw NSW Contentnea Creek at Willow Springs drive near Dixie

Sub-Basin: 03020203 **Lattitude:** 35.6838 County: Wilson Longitude: -77.941

County. Wilson	Su	v-Dusin.	3020203	Luniume. 55.0050 Longitume11:9-				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.2	28.9	20.4	
DO (mg/l)	17	N/A	4	1	3.8	11.8	7.2	
*** pH (SU)	17	N/A	6 to 9	1	3.8	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	67	107	79	
** Fecal Coliform (/100 mls)	12	N/A	400	2	21	2,800	109	
Suspended Residue (mg/l)	12	0	N/A	N/A	6.4	172.0	28.3	
Turbidity (NTU)	12	N/A	50	1	4.9	60.0	17.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.43	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.79	2.24	1.35	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.03	0.52	0.14	
TP (mg/l)	12	0	N/A	N/A	0.03	0.17	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6890000 Stream Class: C Sw NSW Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson

Longitude: -77.8902 County: Wilson Sub-Rasin: 03020203 Lattitude: 35 6429

County: Wilson	Sub-Basin: 03020203			Lo	attitude: 35.6	429 <i>Long</i>	Longitude: -77.89	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.1	28.7	20.1	
DO (mg/l)	17	N/A	4	0	5.0	11.4	7.8	
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	90	256	171	
** Fecal Coliform (/100 mls)	12	N/A	400	1	36	3,100	99	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	29.0	8.6	
Turbidity (NTU)	12	N/A	50	0	3.2	33.0	11.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.63	0.15	
TKN_N (mg/l)	12	0	N/A	N/A	0.71	1.57	1.12	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.22	0.76	0.45	
TP (mg/l)	12	0	N/A	N/A	0.04	0.21	0.11	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7210000 Stream Class: C Sw NSW Contentnea Creek @ NC 58 near Stantonsburg

Sub-Basin: 03020203 **Lattitude:** 35.5861 County: Wilson **Longitude:** -77.8111

County. Wilson	Sub-Busin . 03020203			Latitude. 55.5001 Longitude17.0				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.6	29.0	20.3	
DO (mg/l)	17	N/A	4	1	3.7	10.6	6.9	
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	72	251	143	
** Fecal Coliform (/100 mls)	12	N/A	400	1	64	1,900	164	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.7	21.0	8.5	
Turbidity (NTU)	12	N/A	50	0	6.5	29.0	11.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.36	0.15	
TKN_N (mg/l)	12	0	N/A	N/A	0.63	2.22	1.23	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.20	0.62	0.38	
TP (mg/l)	12	0	N/A	N/A	0.04	1.76	0.24	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7240000

County: Wilson **Sub-Basin:** 03020203 **Lattitude:** 35.5976 **Longitude:** -77.7947

County: Wilson	Sub-Basin: 03020203			Lamuae: 35.5976 Longituae:			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.0	26.9	18.2
DO (mg/l)	17	N/A	4	3	2.4	10.6	6.4
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	71	131	99
** Fecal Coliform (/100 mls)	12	N/A	400	2	28	1,600	148
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	12.0	5.2
Turbidity (NTU)	12	N/A	50	0	4.2	22.0	10.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.27	0.13
TKN_N (mg/l)	12	0	N/A	N/A	0.46	1.58	1.15
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.46	0.20
TP (mg/l)	12	0	N/A	N/A	0.05	0.29	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7325000 Nahunta Swamp @ NC 58 near Contentnea Stream Class: C Sw NSW

Sub-Basin: 03020203 **Lattitude:** 35.5081 **Longitude:** -77.7455 County: Greene

County: Grooms								
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.7	27.6	18.5	
DO (mg/l)	17	N/A	4	0	4.5	10.8	7.9	
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	70	130	109	
** Fecal Coliform (/100 mls)	12	N/A	400	3	86	1,200	251	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	19.0	6.7	
Turbidity (NTU)	12	N/A	50	0	4.3	26.0	11.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.07	0.93	0.20	
TKN_N (mg/l)	12	0	N/A	N/A	0.53	1.64	1.04	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.91	1.54	1.23	
TP (mg/l)	12	0	N/A	N/A	0.06	0.24	0.12	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7330000 Stream Class: C Sw NSW Contentnea Creek @ US 13 near Snow Hill

Sub-Basin: 03020203 *Lattitude*: 35.4585 County: Greene **Longitude:** -77.6753

County. Greene	Sub-Busin . 03020203			Lundine. 55.4565 Longitude17.66				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.3	28.3	20.1	
DO (mg/l)	17	N/A	4	1	3.9	11.3	7.3	
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	56	170	117	
** Fecal Coliform (/100 mls)	12	N/A	400	1	21	1,000	72	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	15.0	6.3	
Turbidity (NTU)	12	N/A	50	0	3.3	35.0	11.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.25	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.44	1.36	0.94	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.37	0.72	0.59	
TP (mg/l)	12	0	N/A	N/A	0.05	0.16	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7690000 Stream Class: C Sw NSW Little Contentnea Creek @ SR 1218 (Chinquapin Road) near

County: Pitt **Sub-Basin:** 03020203 **Lattitude:** 35.5881 **Longitude:** -77.5416

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.0	27.4	18.2
DO (mg/l)	17	N/A	4	7	0.4	10.0	5.4
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	76	380	168
** Fecal Coliform (/100 mls)	12	N/A	400	2	50	1,000	180
Suspended Residue (mg/l)	12	0	N/A	N/A	2.7	9.2	5.6
Turbidity (NTU)	12	N/A	50	0	4.3	16.0	9.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	1.66	0.37
TKN_N (mg/l)	12	0	N/A	N/A	1.04	2.62	1.67
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.29	2.31	0.69
TP (mg/l)	12	0	N/A	N/A	0.04	0.85	0.29
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7740000 Little Contentnea Creek @ SR 1110 (HWY 903) near Scuffleton Stream Class: C Sw NSW

County: Pitt **Sub-Basin:** 03020203 **Lattitude:** 35.4567 **Longitude:** -77.4854

County: Pitt	Sub-Basin: 03020203			Lattitude: 35.4567 Longitude: -1			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.4	27.0	18.9
DO (mg/l)	17	N/A	4	3	3.2	10.2	6.5
*** pH (SU)	17	N/A	6 to 9	0	6.2	7.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	69	199	149
** Fecal Coliform (/100 mls)	12	N/A	400	2	46	1,900	172
Suspended Residue (mg/l)	12	0	N/A	N/A	2.5	49.0	8.3
Turbidity (NTU)	12	N/A	50	0	5.7	21.0	10.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.48	0.19
TKN_N (mg/l)	12	0	N/A	N/A	0.67	2.18	1.36
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.03	0.72	0.39
TP (mg/l)	12	0	N/A	N/A	0.04	0.46	0.25
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7850000 Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp *Stream Class:* C Sw NSW dock upstream of the bridge.

County: Craven **Sub-Basin:** 03020202 *Lattitude*: 35.31368 *Longitude*: -77.30287

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.5	29.8	20.0
DO (mg/l)	17	N/A	4	0	5.2	11.4	7.5
*** pH (SU)	17	N/A	6 to 9	0	6.4	8.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	85	310	153
** Fecal Coliform (/100 mls)	12	N/A	400	2	7	1,200	48
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	29.0	14.4
Turbidity (NTU)	12	N/A	50	0	3.8	33.0	17.4
Chlorophyll-a (ug/l)	12	0	40	0	1.00	25.84	6.34
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.26	0.12
TKN_N (mg/l)	12	0	N/A	N/A	0.62	1.49	0.98
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.21	0.68	0.41
TP (mg/l)	12	1	N/A	N/A	0.02	0.29	0.14
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J8870000 Stream Class: SB Sw NSW Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Bern

County: Craven **Sub-Basin:** 03020204 *Lattitude*: 35.10159 **Longitude:** -77.03708

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
							· ·
Temperature (C)	17	N/A	N/A	N/A	6.5	29.3	20.3
DO (mg/l)	17	N/A	5	5	0.5	12.0	6.3
*** pH (SU)	17	N/A	6.8 to 8.5	0	6.8	8.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	1,704	24,968	12,674
** Fecal Coliform (/100 mls)	12	N/A	400	0	7	230	52
Suspended Residue (mg/l)	12	0	N/A	N/A	3.4	17.0	7.7
Turbidity (NTU)	12	N/A	25	2	2.7	55.0	13.6
Chlorophyll-a (ug/l)	12	0	40	3	3.72	48.08	22.84
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.48	0.20
TKN_N (mg/l)	12	0	N/A	N/A	0.67	1.63	1.25
NO2_NO3_N (mg/l)	12	2	10	0	0.02	0.31	0.15
TP (mg/l)	12	0	N/A	N/A	0.05	0.48	0.15
Cadmium (ug/l)	0	0	5	0			
Chromium (ug/l)	0	0	20	0			
Copper (ug/l)	0	0	3	0			
Nickel (ug/l)	0	0	8	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	86	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.025	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.