Lower Neuse Basin Association P.O. Box 1410 Clayton, North Carolina 27528-1410

Annual Monitoring Report 2021

Submitted By: Ramy Parks, Chairman

Prepared By: Haywood M. Phthisic, III, Executive Director

Lower Neuse Basin Association Contact Information

Officers of the Lower Neuse Basin Association

Chairman -

Barry Parks City of Wilson P.O. Box 10 Wilson, N.C. 27894 252.399.2461 bparks@wilsonnc.org

Treasurer -

Donald Smith
Town of Cary
P.O. Box 8005
Cary, N.C. 27512 - 8005
919.469.4095
donald.smith@townofcary.org

Associates:

Executive Director Haywood M. Phthisic, III
P.O. Box 1410
Clayton, N.C. 27528-1410
919.796.8049
exec.director@lnba.net

Vice Chairman -

John Kiviniemi City of Raleigh P.O. Box 590 Raleigh, N.C. 27602 919.996.6623 John.Kiviniemi@raleighnc.gov

Secretary -

Chuck Smithwick Contentnea MSD P.O. Box 477 Grifton, N.C. 28530 252.413.8898 cmsd100@embarqmail.com

Association Counsel -

Daniel F. McLawhorn 1706 St. Mary's Street Raleigh, N.C. 27608 919.612.4520 hgdunn@poynerspruill.com

Coalition Web Site Address - https://www.lnba.net

Lower Neuse Basin Association April 18, 2022

Members and Contact Information

A complete list of LNBA delegates for 2021 follows in Section I. The Town of Snow Hill joined the LNBA in 2021.

Monitoring Stations for 2021

A complete list of the monitoring stations with station numbers, descriptions, coordinates, county, sub basin and stream classification included in Section II. The LNBA staff visited each station during 2021.

The Agreement between the LNBA and the Division of Water Resources was renewed in 2019. The effective date was August 1, 2019 through July 31, 2024. There were several sampling stations, added, deleted, or moved to a better location for safety reasons or environmental conditions.

Quality Assurance/Quality Control Issues

Environment I reported no quality assurance or quality control issues in 2021.

Environment I reported it completed and passed proficiency testing for its satellite lab (field testing equipment) in 2021.

NCDEQ- DWQ did not conduct a field review and inspection in 2021.

On April 3, 2007, the Division of Water Quality suspended the collection and analysis of total recoverable metals as required by the monitoring coalitions. The metals are no longer collected as part of the LNBA MOA agreement.

Environment I's contact information and sampling methods/protocols are listed in Section III with the sampling errors and omissions for 2021.

Special Projects

The Lower Neuse Basin Association, in cooperation with its sister organization, the Neuse River Compliance Association, has continued with its partnership with Dr. Hans Pearl of the University of North Carolina at Chapel Hill, Institute of Marine Science. The two associations support the MODMON monitoring program of the Neuse River Estuary. The associations began assisting with this research in July 2006 and have extended this support through the 2020-2021 fiscal year. Continued financial support may not be considered.

Suggested Changes

There are no suggested changes at this time.

Statistical Analysis of Data

Statistical analyses of the data for each monitoring station are included in Section IV.

Section I

LNBA Members and Contact Information

		Lower Neuse Basin Mem	se Basin Members and Contact Information for 2021	t Information fo	or 2021
Member	Contact	Address	Phone	Mobile Phone	Email
Duke Energy Progress	Mike Graham	1677 Old Smithfield Rd. Goldsboro, NC	919.580.3983		Mike. Graham2@duke-energy.com
City of Goldsboro	Robert Sherman Bobby Edwards	PO Drawer A Goldsboro, NC 27533	919.735.6075 919.735.3320		RSherman@goldsboronc.gov bedwards@goldsboronc.gov
City of Havelock	Rick Day	PO Drawer 368 Havelock, NC 28532	252.444.6409		<u>rday@havelocknc.us</u>
City of Kinston	Kenneth Stevens	PO Box 339 Kinston, NC 28501	252.939.3275	252.560.0252	kenneth.stevens@ci.kinston.nc.us
City of New Bern	Jordan Hughes Tony Hawkins	PO Box 1129 New Bern, NC 28563	252.639.7527 252.639.7555	252.341.5448 252.521.7687	hughesj@newbern-nc.org hawkinst@newbern-nc.org
City of Raleigh	John Kiviniemi	PO Box 590 Raleigh, NC 27602	919.996.6623	919.810.0368	John.Kiviniemi@raleighnc.gov
City of Wilson	Barry Parks Jimmy Pridgen	PO Box 10 Wilson, NC 27894	252.399.2461 252.399.2491	252.205.2516 252.399.2519	bparks@wilsonnc.org jpridgen@wilsonnc.org
Contentnea MSD	Chuck Smithwick Renee Smith	PO Box 477 Grifton, NC 28530	252.524.5584	252.413.8898	cmsd100@embarqmail.com
Johnston County	Chandra Farmer Dan Wall	PO Box 2263 Smithfield, NC 27577	919.209.8333	919.795.6138	chandra.farmer@johnstonnc.com dan.wall@johnstonnc.com
Dupont-Kinston, Inc.	Jeff White	4693 Highway 11 North Grifton, NC 28530	252.758.5774	252.939.0661	jeff.white@usa.dupont.com
Town of Benson	Tim Robbins Brian Leavitt	PO Box 69 Benson, NC 27504	919.894.1606		trobbins@townofbenson.com bleavitt@townofbenson.com
Town of Cary	Donald Smith Jamie Revels	PO Box 8005 Cary, NC 27512-8005	919.469.4305	919.609.7306	donald.smith@townofcary.org jamie.revels@townofcary.org

Member	Contact	Address	Phone	Mobile Phone	Email
Town of Farmville	David Hodgkins James Shoulders	3672 N. Main St. Farmville, NC 27828-0086	252.753.6700 252.814.6348		dhodgkins@farmville-nc.com James.shoulders@suez.com
Town of Fuquay-Varina	Mike Wagner Chris Grimes	401 Old Honeycutt Rd. Fuquay-Varina, NC 27526	919.753.1013	919.625.3524	<u>mwagner@fuquay-varina.org</u> cgrimes@fuquay-varina.org
Town of Kenly	Larry Faison Phillip Smith	PO Box 519 Kenly, NC 27542	919.284.2116	252.955.2423	larry.faison@townofkenly.com phillip.smith@townofkenly.com
Town of La Grange	James Sutton John Craft	PO Box 368 La Grange, NC 28551	252.566.3186	252.560.9914	jwsutton@lagrangenc.com jpcraft@lagrangenc.com
Town of Apex	David Hardin Michael Deaton	PO Box 250 Apex, NC 27502	919.249.3366 919.249.3413		David.Hardin@apexnc.org Michael.Deaton@apexnc.org
Town of Clayton	Bill Simpson Rich Cappola	PO Box 879 Clayton, NC 27520	919.553.1536 919.553.1530	919.594.0417	wsimpson@townofclaytonnc.org rcappola@townofclaytonnc.org
Town of Snow Hill	Todd Whaley Drake Robart	908 SE 2nd Street Snow Hill, N.C. 28580	252.747.3414	252.939.5213	manager@snowhillnc.com wwtp_orc@snowhillnc.com
Associated Parties					
Executive Director	Haywood Phthisic	PO Box 1410 Clayton, N.C. 27528-1410	919.796.8049	919.796.8049	exec.director@Inba.net
Association Counsel	Dan McLawhorn	1706 St. Mary's Street Raleigh, NC 27608	919.612.4520	919.612.4520	dan@dfm-lawyer.com
Environment 1, Inc.	Mark Oliveira	PO Box 7085, 114 Oakmont E Greenville, NC 27835-7085	252.756.6208 252.756.6208	252.531.8085	moliveira@environment1inc.com

NPDES Permit #	LNBA Permittees Ownership and Facility	Authorized Representative and Title	County	Region	HUC (8 Digit)
NC0003417	Duke Energy Progress Lee Steam Plant	Jeffery D. Hines General Manager	Wayne	WaRO	3020201
NC0003760	E.I. DuPont - Kinston Plant	Emily Price Plant Manager	Lenoir	WaRO	3020202
NC0020389	Town of Benson - Benson WWTP	Tim Robbins Public Utility Director	Johnston	RRO	3020201
NC0021253	City of Havelock - Havelock WWTP	Chris McGee City Manager	Craven	WaRO	3020204
NC0021644	Town of LaGrange - LaGrange WWTP	John Craft Town Manager	Lenoir	WaRO	3020202
NC0023906	City of Wilson - Wilson WWTP	Grant Goings City Manager	Wilson	RRO	3020203
NC0023949	City of Goldsboro - Goldsboro WWTP	Timothy M. Salmon City Manager	Wayne	WaRO	3020202
NC0024236	City of Kinston - Kinston Regional WWTF	Rhonda Barwick Director of Public Services	Lenoir	WaRO	3020202
NC0025348	City of New Bern - New Bern WWTP	Mark Stevens City Manager	Craven	WaRO	3020204
NC0025453	Town of Clayton - Little Creek WWTP	Rich Cappola Interim Town Manager	Johnston	RRO	3020201
NC0029033	City of Raleigh - Neuse River WWTP	John Kiviniemi Resource Recovery Director	Wake	RRO	3020201
NC0029572	Town of Farmville - Farmville WWTP	David Hodgkins Town Manager	Pitt	WaRO	3020203
NC0030716	Johnston County Central Johnston County Regional WWTP	Rick J. Hester County Manager	Johnston	RRO	3020201
NC0030759	City of Raleigh - Smith Creek WWTP	John Kiviniemi Resource Recovery Director	Wake	RRO	3020201
NC0032077	Contentnea Metropolitan Sewerage District Contentnea MSD WWTP	Charles M. Smithwick, Jr. District Manager	Pitt	WaRO	3020203
NC0048879	Town of Cary - North WWTP	Paul Ray North Cary Faciility Manager	Wake	RRO	3020201
NC0064050	Town of Apex - Apex WRF	Drew Havens Town Manager	Wake	RRO	3020201
NC0064891	Town of Kenly - Kenly Regional WWTP	Larry Faison Interim Town Manager	Johnston	RRO	3020201
NC0065102	Town of Cary - South WWTP	Jarrod Buchanan South Cary Facility Manager	Wake	RRO	3020201
NC0066516	Town of Fuquay Varina Terrible Creek WWTP	Adam Mitchell Town Manager	Wake	RRO	3020201
NC0020842	Town of Snow Hill Snow Hill WWTF	Todd Whaley Town Manager	Greene	WaRO	3020203
NC0079316	City of Raleigh - Little Creek WWTP	John Kiviniemi Resource Recovery Director	Wake	RRO	3020203
NC0084735	Johnston County Johnston County WTP	Rick J. Hester County Manager	Johnston	RRO	3020201

Section II

Monitoring Station Information

List Of Monitoring Stations

Station	Location	County	Lattitude	Lattitude Longitude	Class	Sub-Basin
J2230000	Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest	Wake	35.9182	-78.5348	C NSW	03020201
J2330000	Neuse River at SR 2215 (Buffalo Road) near Neuse	Wake	35.8479	-78.5302	C NSW	03020201
J3310000	Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh	Wake	35.8041	-78.6081	C NSW	03020201
13970000	Walnut Creek at SR 2551 (Barwell Road) near Raleigh	Wake	35.7493	-78.5345	C NSW	03020201
J4050000	Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh	Wake	35.7266	-78.5139	C NSW	03020201
14080000	Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale	Wake	35.7309	-78.4776	C NSW	03020201
J4110000	Marks Creek @ SR 1714 (Pitchard Road) near Archer's Lodge	Johnston	35.7062	-78.4312	C NSW	03020201
J4130000	Neuse River @ SR 1700 (Covered Bridge Road) near Archer's Lodge	Johnston	35.6749	-78.4364	WS-V NSW	03020201
J4170000	Neuse River @ at NC 42E of Clayton	Johnston	35.6473	-78.4056	WS-IV NSW	03020201
J4370000	Neuse River at US 70 Business @ Smithfield	Johnston	35.5128	-78.3498	WS-IV NSW	03020201
J4414000	Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia	Wake	35.7187	-78.7527	WS-III NSW	03020201
J4500000	Swift Creek @ Indian Creek former discharge location near Garner, N.C.	Wake	35.6476	-78.6041	C NSW	03020201
J4510500	Swift Creek at SR 1525, Cornwallis Road near Clayton	Johnston	35.5999	-78.5356	C NSW	03020201
J4511000	White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.	Johnston	35.6176	-78.5281	C NSW	03020201
J4520000	Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C.	Johnston	35.5515	-78.46	C NSW	03020201
J4580000	Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston County Airport	Johnston	35.5442	-78.397	C NSW	03020201
14690000	Middle Creek @ SR 1152 (Holly Springs Road) near Holly Springs	Wake	35.6609	-78.8042	C NSW	03020201
J4868000	Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks	Wake	35.6356	-78.7279	C NSW	03020201
74980000	Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs	Wake	35.6091	-78.6866	C NSW	03020201

Page 1 of 3 Monday, April 18, 2022

fo
7
Page

Station	Location	County	Lattitude	Longitude	Class	Sub-Basin
J5002000	Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson	Johnston	35.5626	-78.5756	C NSW	03020201
J5010000	Middle Creek @ NC 210 near Smithfield	Johnston	35.5075	-78.4013	C NSW	03020201
J5170000	Black Creek @ SR 1162 (Black Creek Road) near Four Oaks	Johnston	35.46925	-78.45681	C NSW	03020201
J5250000	Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill	Johnston	35.3741	-78.1962	WS-IV NSW	03020201
15390000	Hannah Creek @ SR 1158 (Allens Crossroads Drive) near Benson	Johnston	35.3868	-78.511	C NSW	03020201
15390800	Hannah Creek @ SR 1227 (Ivey Road) near Benson	Johnston	35.4025	-78.4952	C NSW	03020201
J5410000	Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill	Johnston	35.342	-78.2162	C NSW	03020201
75500000	Falling Creek @ SR 1219 (Old Grantham Road) near Grantham	Wayne	35.3224	-78.1282	WS-IV NSW	03020201
75630000	Little River @ SR 2320, Riley Road near Zebulon	Wake	35.8375	-78.3599	HQW NSW	03020201
15685000	Little River at Weaver Road near Bagley	Johnston	35.5791	-78.1723	WS-V NSW	03020201
J5750000	Little River at SR 2339 (Bagley Road) near Lowell Mill	Johnston	35.5613	-78.1594	WS-V NSW	03020201
J5790000	Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C.	Wake	35.7697	-78.7697	C NSW	03020201
72930000	Little River @ US 581 near Cherry Hospital	Wayne	35.393	-78.0258	C NSW	03020201
J6010950	Walnut Creek @ SR 1730 (Saint Johns Church Road) near Walnut Creek	Wayne	35.2817	-77.8686	C NSW	03020202
J6024000	Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs	Wayne	35.229	-77.846	C NSW	03020202
J6044400	Bear Creek at SR 1603, Washington Street near LaGrange	Lenoir	35.3137	-77.8153	C Sw NSW	03020202
J6044500	Bear Creek @ SR 1311 (Bear Creek Road) near Kinston	Lenoir	35.2489	-77.7843	-77.7843 WS-IV SW NSW	03020202
J6055000	Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange	Lenoir	35.3119	-77.7313	C Sw NSW	03020202
J6150000	Neuse River @ NC 11 Bypass at Kinston	Lenoir	35.2587	-77.5835	C NSW	03020202
J6250000	Neuse River @ NC 55 near Graingers	Lenoir	35.2957	-77.4962	C NSW	03020202
J6410000	Little Creek @ NC 97 near Zebulon	Wake	35.8279	-78.3025	C NSW	03020203

Monday, April 18, 2022

Station	Location	County	Lattitude	Lattitude Longitude Class	Class	Sub-Basin
J6450000	Little Creek @ NC 39 near Zebulon	Wake	35.8125	-78.2681	C NSW	03020203
16500000	Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner	Wilson	35.7301	-78.1895 CNSW	C NSW	03020203
16680000	Turkey Creek @ SR 1101 (Claude Lewis Rodd) near Middlesex	Nash	35.7519	-78.1597 CNSW	C NSW	03020203
J6765000	Contentnea Creek at Willow Springs drive near Dixie	Wilson	35.6838	-77.941	C Sw NSW	03020203
0000689	Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson	Wilson	35.6429	-77.8902	C Sw NSW	03020203
J7210000	Contentnea Creek @ NC 58 near Stantonsburg	Wilson	35.5861	-77.8111 CSWNSW	C Sw NSW	03020203
J7240000	Toisnot Swamp @ SR 1539 (Sand Pit Road) near Stantonsburg	Wilson	35.5976	-77.7947	C Sw NSW	03020203
J7325000	Nahunta Swamp @ NC 58 near Contentnea	Greene	35.5081	-77.7455	C Sw NSW	03020203
17330000	Contentnea Creek @ US 13 near Snow Hill	Greene	35.4585	-77.6753	C Sw NSW	03020203
0000692	Little Contentnea Creek @ SR 1218 (Chinquapin Road) near Farmville	Pitt	35.5881	-77.5416 CSWNSW	C Sw NSW	03020203
J7740000	Little Contentnea Creek @ SR 1110 (HWY 903) near Scuffleton	Pitt	35.4567	-77.4854	C Sw NSW	03020203
17850000	Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp dock upstre	Craven	35.31368	-77.30287	C Sw NSW	03020202
J8870000	Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Be	Craven	35.10159	-77.03708 SB Sw NSW	SB Sw NSW	03020204

Monday, April 18, 2022

Section III

Contract Laboratory Information, Audits, MOA Revisions, and Sample Errors and Omissions

Environment I, Inc.

Mark Oliveira, President P.O. Box 7085 114 Oakmont Dr. Greenville, N.C. 27835-7085

252.756.6208

moliveira@environmentlinc.com

Environment 1, Inc. River Basin Method Codes 2021

Parameter	EPA / SM code	Rev./ date used until 08/31/2021	Rev./ date used starting 09/01/2021
Temp (° C)	SM 2550B	2010	2010
DO (mg/l)	SM 4500 OG	2011	2016*
pH (su)	SM 4500 HB	2011	2011
Conductivity (umhos/cm)	SM 2510 B	2011	2011
Fecal Coliform	SM 9222 D	2006	2015*
Suspended Residue, (mg/l)	SM 2540 D	2011	2015*
Turbidity (NTU)	SM 2130 B	2011	2011
Chlorophyll_a (ug/l)	EPA 445.0	Rev. 1.2 - 1997	Rev. 1.2 - 1997
NH3_N (mg/l)	EPA 350.1	Rev. 2.0 - 1993	Rev. 2.0 - 1993
TKN_N (mg/l)	EPA 351.2	Rev. 2.0 - 1993	Rev. 2.0 - 1993
NO2_NO3_N (mg/l)	EPA 353.2	Rev. 2.0 - 1993	Rev. 2.0 - 1993
TP (mg/l)	EPA 365.4	Rev. 2.0 - 1974	Rev. 2.0 - 1974

^{*} New Method revision date as of 09/01/2021

STATE OF NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY

LABORATORY CERTIFICATION BRANCH **DIVISION OF WATER RESOURCES**

In accordance with the provisions of N.C.G.S. 143-215.3 (a) (1), 143-215.3 (a)(10) and NCAC 2H.0800:

Environment 1 Inc.

Is hereby certified to perform environmental analysis as listed on Attachment I and report monitoring data to DEQ for compliance with NPDES effluent, surface water, groundwater, and pretreatment regulations.

By reference 15A NCAC 2H.0800 is made a part of this certificate.

This certificate does not guarantee validity of data generated, but indicates the methodology, equipment, quality control procedures, records, and proficiency of the laboratory have been examined and found to be acceptable.

This certificate shall be valid until 12/31/2021

Certificate No. 10

Certified Parameters Listing

Environment 1 Inc. 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

Sertificate Number: **Expiration Date:** Effective Date:

2/31/2021 1/1/2021

1/1/2021

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

INORGANIC

ALKALINITY

BACTERIA - COLIFORM FECAL SM 2320 B-2011 (Aqueous)

SM 9221C E-2006 (MPN) (Aqueous)

SM 9221C E-2006 (MPN) (Biosolids)

SM 9222 D-2006 (MF) (Aqueous) **3ACTERIA - COLIFORM TOTAL**

SM 9221 B-2006 (MPN) (Aqueous)

SM 9222 B-2006 (MF) (Aqueous)

BACTERIA - ENTEROCOCCI

IDEXX Enterolert® (MPN) (Aqueous)

SM 5210 B-2011 (LDO) (Aqueous)

SM 5210 B-2011 (LDO) (Aqueous)

CHLORIDE

SM 4500 Cl⁻ B-2011 (Aqueous)

EPA 445.0, Rev. 1.2 (Fluorometric) (Aqueous) CHLOROPHYLL a

Hach 8000 (Aqueous)

COLOR, ADMI

SM 2120 F-2011 (ADMI) (Aqueous)

COLOR, PC

SM 2120 B-2011 (PtCo) (Aqueous)

CONDUCTIVITY

SM 2510 B-2011 (Aqueous) CYANIDE

SM 4500 CN⁻ E-2011 (Total) (Non-Aqueous) SM 4500 CN E-2011 (Total) (Aqueous)

DISSOLVED OXYGEN

SM 4500 O G-2011 (Aqueous)

-LUORIDE

(NO3 + NO2 EPA 353.2, Rev. 2.0, 1993) - (NO2 EPA 353.2, Rev. 2.0, 1993) (Aqueous) SM 5310 C-2011 (UV Oxidation) (Aqueous) SM 5310 C-2011 (UV Oxidation) (Aqueous) EPA 353.2, Rev. 2.0, 1993 (Aqueous) EPA 351.2, Rev. 2.0, 1993 (Aqueous) EPA 350.1, Rev. 2.0, 1993 (Aqueous) EPA 353.2, Rev. 2.0, 1993 (Aqueous) **DRGANIC CARBON, DISSOLVED** HARDNESS TOTAL - WET CHEM EPA 420.1, Rev. 1978 (Aqueous) NITROGEN, TOTAL KJELDAHL SM 4500 F⁻ C-2011 (Aqueous) SM 4500 H+B-2011 (Aqueous) SM 4500 P E-2011 (Aqueous) RESIDUE, DISSOLVED 180 C EPA 1664 Rev. B (Aqueous) EPA 365.4, 1974 (Aqueous) SM 2540 C-2011 (Aqueous) SM 2540 D-2011 (Aqueous) SM 2340 C-2011 (Aqueous) ORGANIC CARBON, TOTAL ASTM D5907-13 (Aqueous) SM 2540 F-2011 (Aqueous) RESIDUE, SETTLEABLE RESIDUE, SUSPENDED NITROGEN, NO3 + NO2 PHOSPHORUS, TOTAL NORGANIC PHENOLS **NITROGEN, AMMONIA** PHOSPHATE, ORTHO NITROGEN, NITRATE NITROGEN, NITRITE OIL & GREASE

Certified Parameters Listing

Environment 1 Inc. 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

1/1/2021 12/31/2021 Certificate Number: **Expiration Date:** Effective Date:

1/1/2021

10

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

EPA 200.8, Rev. 5.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)	CADMIUM
RESIDUE, TOTAL	SM 2540 B-2011 (Aqueous)	SM 2540 G-2011 (Non-Aqueous)

SM 3113 B-2010 (Aqueous)

SM 3113 B-2010 (Non-Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

SM 4500 SO42 E-2011 (Aqueous)

SM 2520 B-2011 (Aqueous)

SALINITY

SULFATE

SM 4500 S²⁻ D-2011 (Aqueous)

SULFIDE

SM 2550 B-2010 (Aqueous)

TURBIDITY

TEMPERATURE

SM 2130 B-2011 (Aqueous)

CALCIUM

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

CHROMIUM TOTAL

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

ANTIMONY

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

SM 3113 B-2010 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

ALUMINUM

COBALT

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

COPPER

SM 3111 B-2011 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous) SW-846 6020 B (Aqueous)

SM 3111 B-2011 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

BERYLLIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

BARIUM

SM 3113 B-2010 (Non-Aqueous)

SM 3113 B-2010 (Aqueous)

ARSENIC

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

Certified Parameters Listing

Environment 1 Inc. 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

12/31/2021 1/1/2021 1/1/2021 Certificate Number: Expiration Date: Effective Date:

10

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SM 3113 B-2010 (Agueous)	SELENIUM
SM 3113 B-2010 (Non-Aqueous)	SM 3113 B-2010 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	SM 3113 B-2010 (Non-Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
SW-846 6020 B (Aqueous)	SW-846 6020 B (Aqueous)
MAGNESIUM	SILVER
SM 3111 B-2011 (Aqueous)	SM 3113 B-2010 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
MANGANESE	SW-846 6020 B (Aqueous)
SM 3111 B-2011 (Aqueous)	SODIUM
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	SM 3111 B-2011 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	SM 3111 B-2011 (Non-Aqueous)
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
MERCURY	EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)
EPA 245.1, Rev. 3.0, 1994 (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
SW-846 7471 B (Non-Aqueous)	THALLIUM
EPA 1631 E (Aqueous)	EPA 279.2, 1978 (Aqueous)
MOLYBDENUM	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	SW-846 6020 B (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	NIL
EPA 200.8, Rev. 5.4, 1994 (Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
SW-846 6020 B (Aqueous)	EPA 200.8, Rev. 5.4, 1994 (Aqueous)
NICKEL	SW-846 6020 B (Aqueous)
EPA 200.7, Rev. 4.4, 1994 (Aqueous)	VANADIUM
EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)	EPA 200.7, Rev. 4.4, 1994 (Aqueous)
	EDA 200 8 Dev. 5.4 1004 (Anileolis)

EPA 200.8, Rev. 5.4, 1994 (Aqueous) SW-846 6020 B (Aqueous) ZINC

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous) EPA 200.7, Rev. 4.4, 1994 (Aqueous) SM 3111 B-2011 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

SM 3111 B-2011 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

POTASSIUM

Certified Parameters Listing

Environment 1 Inc. 114 Oakmont Dr. Lab Name: Address:

Greenville, NC 27858

Certificate Number: Expiration Date: Effective Date:

12/31/2021 1/1/2021

10

1/1/2021

Date of Last Amendment:

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SW-846 6020 B (Aqueous)

ORGANIC

BASE NEUTRAL/ACID, ORGANICS

EPA 625.1 (Aqueous)

SW-846 8270 E (Aqueous)

CHLORINATED ACID HERBICIDES

SW-846 8151 A (Aqueous)

PESTICIDES, ORGANOCHLORINE

SW-846 8081 B (Aqueous)

PURGEABLE, AROMATICS

EPA 602 (Aqueous)

SM 6200 C-2011 (Aqueous)

PURGEABLE, HALOCARBONS

SM 6200 C-2011 (Aqueous)

PURGEABLE, ORGANICS

EPA 624.1 (Aqueous)

SW-846 8260 D (Aqueous)

Amendment to the Memorandum of Agreement Between the North Carolina Division of Water Resources and the Lower Neuse Basin Association

WHEREAS, the NORTH CAROLINA DIVISION OF WATER RESOURCES, the LOWER NEUSE BASIN ASSOCIATION, and NPDES PERMITTEES have entered into a MEMORANDUM OF AGREEMENT (MOA) dated August 1, 2019; and

WHEREAS, the MOA allows modification to add certain new parties to the MOA by written consent of the DWR and the LNBA; and

NOW THEREFORE, the MOA is hereby amended as follows:

The SNOW HILL WASTE WATER TREAMENT PLANT (NC0020842) is added to the MOA; and Todd Whaley, Interim Town Manager, is added as the signature authority.

By:	Zold A. Whiley
	Todd Whaley, Interim Town Manager for the SNOW HILL WASTE WATER TREATMENT PLANT
Date:	9/17/2021

IN WITNESS WHEREOF, the parties have caused the execution of this instrument by authority duly given, to be effective as of October 1st, 2021.

Ву:	LOWER NEUSE BASIN ASSOCIATION Pumy Paulo Barry Parks, Chair Lower Neuse Basin Association	NORTH CAROLINA DIVISION OF WATER RESOURCES By: S. Daniel Smith, Director North Carolina Division of Water Resources
Date:	9/17/21	Date:

LNBA Sample Errors/Omissions for 2021

Date: 4/20/2022

February, 2021 J5010000 J5170000 J5250000 J5390800 J5390800 J5500000	2/15/2021 2/15/2021 2/15/2021 2/15/2021 2/15/2021 2/22/2021	Dissolved oxygen equipment issue, unable to stabilize, sample collected on later date bissolved oxygen equipment issue, unable to stabilize, sample collected on later date bissolved oxygen equipment issue, unable to stabilize, sample collected on later date bissolved oxygen equipment issue, unable to stabilize, sample collected on later date bissolved oxygen equipment issue, unable to stabilize, sample collected on later date Unable to access, road flooded
August, 2021 J4520000	8/17/2021	Unable to access- bridge construction
October, 2021 J4580000	10/7/2021	Unable to access- stream nearly dry
November, 2021 J2230000	11/8/2021	Unable to access- stream nearly dry

Section IV

Statistical Analysis of Sampling Data

Station J2230000 Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest *Stream Class:* C NSW

County: Wake **Sub-Basin:** 03020201 *Lattitude:* 35.9182 **Longitude:** -78.5348

County. Wake	Su	v-Dusin. C	J302020 I	L	ишине. 55.8	102 Long	iiiie10.55
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	15	N/A	N/A	N/A	7.6	25.4	20.0
DO (mg/l)	15	N/A	4	0	7.0	11.2	8.3
*** pH (SU)	15	N/A	6 to 9	0	6.5	7.5	N/A
Conductivity (umhos/cm)	15	1	N/A	N/A	50	132	105
** Fecal Coliform (/100 mls)	10	N/A	400	2	50	6,000	305
Suspended Residue (mg/l)	10	1	N/A	N/A	3.4	1,210.0	128.6
Turbidity (NTU)	10	N/A	50	1	10.0	1,100.0	125.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	10	1	N/A	N/A	0.02	0.22	0.08
TKN_N (mg/l)	10	0	N/A	N/A	0.26	0.96	0.48
NO2_NO3_N (mg/l)	10	0	N/A	N/A	0.22	0.92	0.67
TP (mg/l)	10	0	N/A	N/A	0.05	0.96	0.24
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J2330000 Stream Class: CNSW Neuse River at SR 2215 (Buffalo Road) near Neuse

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8479 **Longitude:** -78.5302

County: Wallo	~"	o Dusiii. o	.0020201	2.		20118	70.00
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.4	29.1	20.4
DO (mg/l)	17	N/A	4	0	6.2	12.7	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	62	114	90
** Fecal Coliform (/100 mls)	12	N/A	400	2	20	6,000	118
Suspended Residue (mg/l)	12	0	N/A	N/A	3.1	124.0	19.6
Turbidity (NTU)	12	N/A	50	1	4.2	95.0	19.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.21	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.38	0.85	0.61
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.08	0.70	0.30
TP (mg/l)	12	0	N/A	N/A	0.04	0.29	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3310000 Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh Stream Class: CNSW

County: Wake **Sub-Basin:** 03020201 **Longitude:** -78.6081 **Lattitude:** 35.8041

County. Wake	Su	v-Dusin.	J302020 I	L	инине. 55.0	1041 Long	<i>iiiiie10.00</i>
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.1	28.4	20.1
DO (mg/l)	17	N/A	4	0	6.3	12.2	8.5
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	78	211	154
** Fecal Coliform (/100 mls)	12	N/A	400	6	110	6,100	495
Suspended Residue (mg/l)	12	0	N/A	N/A	2.8	350.0	37.1
Turbidity (NTU)	12	N/A	50	1	6.3	240.0	34.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.15	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.38	1.21	0.72
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.15	0.51	0.36
TP (mg/l)	12	1	N/A	N/A	0.02	0.42	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3970000 Stream Class: CNSW Walnut Creek at SR 2551 (Barwell Road) near Raleigh

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.7493 **Longitude:** -78.5345

County. Wake	Su	v-Dusin.	J302020 I	L	ишине. 55.1	495 Long	шие16.55
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.8	26.6	19.1
DO (mg/l)	17	N/A	4	0	6.7	11.6	8.5
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	102	181	128
** Fecal Coliform (/100 mls)	12	N/A	400	3	112	6,000	320
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	18.0	7.9
Turbidity (NTU)	12	N/A	50	0	6.8	28.0	16.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.11	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.32	0.65	0.45
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.22	0.67	0.39
TP (mg/l)	12	0	N/A	N/A	0.04	0.18	0.07
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4050000 Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh *Stream Class:* C NSW

Longitude: -78.5139 **Sub-Basin:** 03020201 *Lattitude*: 35.7266 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7266 Longitude: -78.513				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.4	27.7	19.8	
DO (mg/l)	17	N/A	4	0	6.0	12.4	8.3	
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	62	130	101	
** Fecal Coliform (/100 mls)	12	N/A	400	2	33	6,000	148	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.1	24.0	13.1	
Turbidity (NTU)	12	N/A	50	0	5.1	24.0	16.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.20	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.39	0.86	0.57	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.16	0.40	0.30	
TP (mg/l)	12	0	N/A	N/A	0.04	0.17	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4080000 Stream Class: CNSW Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale **Longitude:** -78.4776 **Sub-Basin:** 03020201 *Lattitude*: 35.7309 County: Wake

County: Wake	Su	b-Basın: 0	3020201	Lo	attītude: 35.7	309 <i>Long</i>	<i>itude: -</i> 78.47
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.8	23.6	17.6
DO (mg/l)	17	N/A	4	0	7.2	11.5	8.7
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	76	178	132
** Fecal Coliform (/100 mls)	12	N/A	400	5	112	1,300	325
Suspended Residue (mg/l)	12	0	N/A	N/A	4.8	16.0	10.5
Turbidity (NTU)	12	N/A	50	0	4.9	21.0	11.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.20	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.40	0.88	0.63
NO2_NO3_N (mg/l)	12	0	N/A	N/A	1.22	3.21	1.90
TP (mg/l)	12	0	N/A	N/A	0.11	0.60	0.34
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4110000 Marks Creek @ SR 1714 (Pitchard Road) near Archer's Lodge Stream Class: C NSW

I.ongitude: -78.4312 County: Johnsto Sub-Rasin: 03020201 I attitudo: 35 7062

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.7062 Longitude: -78.4				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
T (0)							O	
Temperature (C)	17	N/A	N/A	N/A	6.5	25.8	18.2	
DO (mg/l)	17	N/A	4	0	6.9	11.7	8.5	
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	58	88	77	
** Fecal Coliform (/100 mls)	12	N/A	400	5	78	7,100	352	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.8	25.0	11.0	
Turbidity (NTU)	12	N/A	50	0	7.0	30.0	14.9	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.15	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.28	0.81	0.54	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.13	0.47	0.26	
TP (mg/l)	12	1	N/A	N/A	0.02	0.19	0.08	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4130000 Stream Class: WS-V NSW Neuse River @ SR 1700 (Covered Bridge Road) near Archer's

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.6749 Longitude: -78.4364

	•	N. D.	D 4	N>Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.6	27.6	20.2
DO (mg/l)	17	N/A	4	0	6.3	12.0	8.0
*** pH (SU)	17	N/A	6 to 9	0	6.2	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	75	264	175
** Fecal Coliform (/100 mls)	12	N/A	400	2	31	818	152
Suspended Residue (mg/l)	12	1	N/A	N/A	2.6	30.0	15.7
Turbidity (NTU)	12	N/A	50	0	4.8	27.0	16.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.15	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.39	0.80	0.60
NO2_NO3_N (mg/l)	12	0	10	0	0.22	0.83	0.44
TP (mg/l)	12	0	N/A	N/A	0.03	0.93	0.24
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4170000 Neuse River @ at NC 42E of Clayton Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude:** 35.6473 **Longitude:** -78.4056 County: Johnston

•						8	
				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.6	27.5	19.8
DO (mg/l)	17	N/A	4	0	5.1	11.9	7.7
*** pH (SU)	17	N/A	6 to 9	1	5.6	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	79	270	178
** Fecal Coliform (/100 mls)	12	N/A	400	3	30	2,300	194
Suspended Residue (mg/l)	12	0	N/A	N/A	3.1	29.0	12.7
Turbidity (NTU)	12	N/A	50	0	5.1	29.0	16.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.21	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.40	0.94	0.65
NO2_NO3_N (mg/l)	12	0	10	0	0.27	0.92	0.55
TP (mg/l)	12	0	N/A	N/A	0.09	0.84	0.25
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4370000 Stream Class: WS-IV NSW Neuse River at US 70 Business @ Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5128 County: Johnston **Longitude:** -78.3498

County: Connectin	200	o Busin. c	.0020201	2.		120 20118	70.01
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.5	29.2	20.2
DO (mg/l)	17	N/A	4	0	5.6	11.8	7.8
*** pH (SU)	17	N/A	6 to 9	1	5.5	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	76	262	165
** Fecal Coliform (/100 mls)	12	N/A	400	5	28	6,000	250
Suspended Residue (mg/l)	12	0	N/A	N/A	4.1	136.0	30.6
Turbidity (NTU)	12	N/A	50	2	4.5	100.0	29.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.10	0.06
TKN_N (mg/l)	12	1	N/A	N/A	0.20	0.82	0.61
NO2_NO3_N (mg/l)	12	0	10	0	0.25	0.77	0.48
TP (mg/l)	12	0	N/A	N/A	0.07	0.27	0.17
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4414000 Stream Class: WS-III NSW Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia

Longitude: -78.7527 County: Wake Sub-Rasin: 03020201 Lattitude: 35 7187

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7187 Longitude: -78.7			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.2	27.8	19.2
DO (mg/l)	17	N/A	4	0	4.0	12.4	7.3
*** pH (SU)	17	N/A	6 to 9	1	5.5	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	67	138	98
** Fecal Coliform (/100 mls)	12	N/A	400	3	41	3,800	229
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	109.0	19.3
Turbidity (NTU)	12	N/A	50	0	5.9	30.0	13.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.12	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.38	1.28	0.69
NO2_NO3_N (mg/l)	12	0	10	0	0.03	0.27	0.15
TP (mg/l)	12	0	N/A	N/A	0.03	0.35	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4500000 Stream Class: CNSW Swift Creek @ Indian Creek former discharge location near

Garner, N.C.

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6476 **Longitude:** -78.6041

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.7	27.7	19.9
DO (mg/l)	17	N/A	4	0	4.2	12.1	7.0
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	60	96	83
** Fecal Coliform (/100 mls)	12	N/A	400	2	38	855	142
Suspended Residue (mg/l)	12	0	N/A	N/A	2.9	33.0	11.6
Turbidity (NTU)	12	N/A	50	0	6.2	50.0	20.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.37	0.15
TKN_N (mg/l)	12	0	N/A	N/A	0.46	0.92	0.66
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.33	0.17
TP (mg/l)	12	1	N/A	N/A	0.02	0.13	0.08
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4510500 Stream Class: CNSW Swift Creek at SR 1525, Cornwallis Road near Clayton

Lattitude: 35.5999 County: Johnston **Sub-Basin:** 03020201 Longitude: -78.5356

County. Johnston	Sui	Sub-Dusin. 03020201			Lunuae. 55.5999 Longitude76.5				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	5.9	26.9	19.0		
DO (mg/l)	17	N/A	4	0	5.1	12.2	7.8		
*** pH (SU)	17	N/A	6 to 9	1	5.0	7.2	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	59	100	85		
** Fecal Coliform (/100 mls)	12	N/A	400	1	42	420	110		
Suspended Residue (mg/l)	12	0	N/A	N/A	2.8	25.0	10.2		
Turbidity (NTU)	12	N/A	50	0	7.5	40.0	19.2		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.40	0.12		
TKN_N (mg/l)	12	0	N/A	N/A	0.36	0.70	0.51		
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.03	0.38	0.22		
TP (mg/l)	12	1	N/A	N/A	0.02	0.12	0.07		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	88	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	N/A	N/A					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4511000 Stream Class: CNSW White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.

Sub-Basin: 03020201 **Lattitude:** 35.6176 County: Johnston **Longitude:** -78.5281

Sub-Busin. 03020201			L	iiiiie10.520		
N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
17	N/A	N/A	N/A	6.3	29.9	21.3
17	N/A	4	2	2.4	12.1	7.2
17	N/A	6 to 9	1	5.2	7.1	N/A
17	2	N/A	N/A	50	80	67
12	N/A	400	0	7	380	38
12	0	N/A	N/A	4.4	20.0	9.4
12	N/A	50	0	6.5	45.0	20.3
0	0	40	0			
12	0	N/A	N/A	0.04	0.35	0.11
12	1	N/A	N/A	0.20	1.00	0.67
12	1	N/A	N/A	0.02	0.42	0.13
12	1	N/A	N/A	0.02	0.13	0.08
0	0	2	0			
0	0	50	0			
0	0	7	0			
0	0	88	0			
0	0	25	0			
0	0	50	0			
0	0	87	0			
0	0	1,000	0			
0	0	N/A	N/A			
0	0	10	0			
0	0	0.012	N/A			
	N 17 17 17 17 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0	N N <rl 0="" 0<="" 1="" 12="" 17="" 2="" a="" n="" td=""><td>17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 2 N/A 12 N/A 400 12 0 N/A 12 N/A 50 0 0 40 12 N/A 50 0 0 40 12 1 N/A 12 1 N/A 12 1 N/A 0 0 2 0 0 50 0 0 50 0 0 88 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A 0 0 1,000 0 0 10</td><td>N N Ref N > Ref or N 17 N/A N/A N/A 17 N/A 4 2 17 N/A 6 to 9 1 17 2 N/A N/A 12 N/A 400 0 12 N/A 400 0 12 N/A 50 0 0 0 40 0 12 N/A N/A N/A 12 1 N/A N/A 0 0 50 0 0 <td< td=""><td>N N<rl< th=""> Ref or N N > Ref N Minimum 17 N/A N/A N/A 6.3 17 N/A 4 2 2.4 17 N/A 6 to 9 1 5.2 17 2 N/A N/A 50 12 N/A 400 0 7 12 0 N/A N/A 4.4 12 N/A 50 0 6.5 0 0 40 0 0 12 N/A 50 0 6.5 0 0 40 0 0 12 1 N/A N/A 0.04 12 1 N/A N/A 0.02 12 1 N/A N/A 0.02 12 1 N/A N/A 0.02 0 0 5 0 0 0 0 0 0 0</rl<></td><td>N N Ref or N N Minimum Maximum 17 N/A N/A N/A 6.3 29.9 17 N/A 4 2 2.4 12.1 17 N/A 6 to 9 1 5.2 7.1 17 2 N/A N/A 50 80 12 N/A 400 0 7 380 12 N/A 400 0 7 380 12 N/A 400 0 7 380 12 N/A 50 0 6.5 45.0 0 0 40 0 0 45.0 0 0 40 0 0 45.0 0 0 N/A N/A 0.04 0.35 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.13 0 0</td></td<></td></rl>	17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 2 N/A 12 N/A 400 12 0 N/A 12 N/A 50 0 0 40 12 N/A 50 0 0 40 12 1 N/A 12 1 N/A 12 1 N/A 0 0 2 0 0 50 0 0 50 0 0 88 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A 0 0 1,000 0 0 10	N N Ref N > Ref or N 17 N/A N/A N/A 17 N/A 4 2 17 N/A 6 to 9 1 17 2 N/A N/A 12 N/A 400 0 12 N/A 400 0 12 N/A 50 0 0 0 40 0 12 N/A N/A N/A 12 1 N/A N/A 0 0 50 0 0 <td< td=""><td>N N<rl< th=""> Ref or N N > Ref N Minimum 17 N/A N/A N/A 6.3 17 N/A 4 2 2.4 17 N/A 6 to 9 1 5.2 17 2 N/A N/A 50 12 N/A 400 0 7 12 0 N/A N/A 4.4 12 N/A 50 0 6.5 0 0 40 0 0 12 N/A 50 0 6.5 0 0 40 0 0 12 1 N/A N/A 0.04 12 1 N/A N/A 0.02 12 1 N/A N/A 0.02 12 1 N/A N/A 0.02 0 0 5 0 0 0 0 0 0 0</rl<></td><td>N N Ref or N N Minimum Maximum 17 N/A N/A N/A 6.3 29.9 17 N/A 4 2 2.4 12.1 17 N/A 6 to 9 1 5.2 7.1 17 2 N/A N/A 50 80 12 N/A 400 0 7 380 12 N/A 400 0 7 380 12 N/A 400 0 7 380 12 N/A 50 0 6.5 45.0 0 0 40 0 0 45.0 0 0 40 0 0 45.0 0 0 N/A N/A 0.04 0.35 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.13 0 0</td></td<>	N N <rl< th=""> Ref or N N > Ref N Minimum 17 N/A N/A N/A 6.3 17 N/A 4 2 2.4 17 N/A 6 to 9 1 5.2 17 2 N/A N/A 50 12 N/A 400 0 7 12 0 N/A N/A 4.4 12 N/A 50 0 6.5 0 0 40 0 0 12 N/A 50 0 6.5 0 0 40 0 0 12 1 N/A N/A 0.04 12 1 N/A N/A 0.02 12 1 N/A N/A 0.02 12 1 N/A N/A 0.02 0 0 5 0 0 0 0 0 0 0</rl<>	N N Ref or N N Minimum Maximum 17 N/A N/A N/A 6.3 29.9 17 N/A 4 2 2.4 12.1 17 N/A 6 to 9 1 5.2 7.1 17 2 N/A N/A 50 80 12 N/A 400 0 7 380 12 N/A 400 0 7 380 12 N/A 400 0 7 380 12 N/A 50 0 6.5 45.0 0 0 40 0 0 45.0 0 0 40 0 0 45.0 0 0 N/A N/A 0.04 0.35 12 1 N/A N/A 0.02 0.42 12 1 N/A N/A 0.02 0.13 0 0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4520000 Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C. Stream Class: C NSW

County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.5515 Longitude: -78.46

County: Johnston	unty: Johnston Sub-Basin: 03020201			Lattitude: 35.5515 Longitude: -78.46				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	16	N/A	N/A	N/A	6.1	26.2	18.4	
DO (mg/l)	16	N/A	4	0	6.2	12.2	8.2	
*** pH (SU)	16	N/A	6 to 9	3	4.2	7.1	N/A	
Conductivity (umhos/cm)	16	1	N/A	N/A	50	106	86	
** Fecal Coliform (/100 mls)	12	N/A	400	2	56	6,000	189	
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	28.0	9.4	
Turbidity (NTU)	12	N/A	50	0	4.7	45.0	16.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.30	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.33	0.75	0.51	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.44	0.25	
TP (mg/l)	12	1	N/A	N/A	0.02	0.21	0.08	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4580000 Stream Class: CNSW Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston County Airport

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5442 Longitude: -78.397

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	18	N/A	N/A	N/A	6.0	26.0	18.6
DO (mg/l)	18	N/A	4	0	5.5	13.2	8.2
*** pH (SU)	18	N/A	6 to 9	0	6.0	7.2	N/A
Conductivity (umhos/cm)	18	0	N/A	N/A	60	103	85
** Fecal Coliform (/100 mls)	12	N/A	400	1	62	646	168
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	25.0	7.7
Turbidity (NTU)	12	N/A	50	0	4.8	37.0	14.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.10	0.06
TKN_N (mg/l)	12	0	N/A	N/A	0.38	0.68	0.55
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.13	0.53	0.32
TP (mg/l)	12	0	N/A	N/A	0.02	0.11	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4690000 Stream Class: CNSW Middle Creek @ SR 1152 (Holly Springs Road) near Holly

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6609 **Longitude:** -78.8042

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
							Ü
Temperature (C)	17	N/A	N/A	N/A	7.3	25.8	18.6
DO(mg/l)	17	N/A	4	0	5.4	12.3	8.1
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	84	424	255
** Fecal Coliform (/100 mls)	12	N/A	400	2	40	3,900	182
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	28.0	6.2
Turbidity (NTU)	12	N/A	50	0	4.3	45.0	14.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.34	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.38	0.88	0.67
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.45	1.19	0.87
TP (mg/l)	12	0	N/A	N/A	0.11	0.64	0.32
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4868000 Stream Class: CNSW Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks

Sub-Basin: 03020201 **Lattitude:** 35.6356 Longitude: -78.7279 County: Wake N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 7.0 26.9 19.8 DO (mg/l) 17 N/A 0 5.7 11.6 7.6 4 *** pH (SU) 17 N/A 6 to 9 0 6.5 7.3 N/A Conductivity (umhos/cm) 17 0 N/A N/A 86 399 227 ** Fecal Coliform (/100 mls) 2 44 3,000 191 12 N/A 400 4.2 0 N/A 71.0 13.7 Suspended Residue (mg/l) 12 N/A 12 N/A 50 1 4.8 60.0 18.3 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 0 N/A N/A 0.04 0.80 0.14 12 0 N/A N/A 0.42 1.07 0.68 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 N/A N/A 0.22 0.78 0.50 12 12 0 N/A N/A 0.04 0.42 0.15 TP (mg/l)2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1.000 0 Iron (ug/l) 0 N/A Manganese (ug/l) 0 N/A Arsenic (ug/l) 0 0 10 0 0 0 0.012 N/A

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

Mercury (ug/l)

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4980000 Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs Stream Class: C NSW

Longitude: -78.6866 **Sub-Basin:** 03020201 *Lattitude*: 35.6091 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.6091 Longitude: -78			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.1	27.3	19.6
DO (mg/l)	17	N/A	4	0	5.7	11.7	8.1
*** pH (SU)	17	N/A	6 to 9	1	5.6	7.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	87	372	210
** Fecal Coliform (/100 mls)	12	N/A	400	2	66	2,600	268
Suspended Residue (mg/l)	12	0	N/A	N/A	4.0	98.0	17.6
Turbidity (NTU)	12	N/A	50	1	6.8	85.0	21.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.18	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.37	1.48	0.70
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.24	1.08	0.55
TP (mg/l)	12	0	N/A	N/A	0.04	0.30	0.16
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5002000 Stream Class: CNSW Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35 5626 **Longitude:** -78.5756

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5626 Longitude: -78.575				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.4	26.4	18.9	
DO (mg/l)	17	N/A	4	0	5.7	12.1	8.0	
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	74	309	167	
** Fecal Coliform (/100 mls)	12	N/A	400	3	62	5,100	270	
Suspended Residue (mg/l)	12	0	N/A	N/A	4.1	234.0	27.6	
Turbidity (NTU)	12	N/A	50	1	6.9	210.0	31.9	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.05	0.22	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.37	1.25	0.67	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.33	0.72	0.51	
TP (mg/l)	12	0	N/A	N/A	0.05	0.37	0.13	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5010000 Stream Class: CNSW Middle Creek @ NC 210 near Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5075 County: Johnston **Longitude:** -78.4013

County. Johnston	Sub-Busin. 03020201			Luttitute. 55.5075 Longitute76.4				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	18	N/A	N/A	N/A	5.5	25.9	18.3	
DO (mg/l)	17	N/A	4	0	6.2	11.6	8.0	
*** pH (SU)	17	N/A	6 to 9	2	5.8	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	59	249	152	
** Fecal Coliform (/100 mls)	12	N/A	400	3	21	836	150	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.6	26.0	9.2	
Turbidity (NTU)	12	N/A	50	0	4.3	35.0	16.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.13	0.07	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	1.00	0.59	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.28	0.70	0.44	
TP (mg/l)	12	0	N/A	N/A	0.04	0.18	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5170000 Stream Class: CNSW Black Creek @ SR 1162 (Black Creek Road) near Four Oaks

Sub-Basin: 03020201 County: Johnston *Lattitude:* 35.46925 **Longitude:** -78.45681

County. Johnston	Sub-Busin. 03020201			Lumune. 33.40923 Longitude70.43				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	18	N/A	N/A	N/A	5.4	25.8	18.3	
DO (mg/l)	17	N/A	4	5	2.0	11.7	6.0	
*** pH (SU)	17	N/A	6 to 9	3	5.1	6.7	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	52	90	71	
** Fecal Coliform (/100 mls)	12	N/A	400	2	13	791	112	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	8.7	4.9	
Turbidity (NTU)	12	N/A	50	0	5.6	22.0	11.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.26	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.36	1.17	0.73	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.53	0.22	
TP (mg/l)	12	0	N/A	N/A	0.04	0.11	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5250000 Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill Stream Class: WS-IV NSW

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.3741 **Longitude:** -78.1962

County: Johnston	Sub-Basin: 03020201			L	uttituae: 35.3	3741 Long	Longituae: -78.196	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	18	N/A	N/A	N/A	5.9	28.5	20.1	
DO (mg/l)	17	N/A	4	0	5.4	11.2	7.6	
*** pH (SU)	17	N/A	6 to 9	1	6.4	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	74	265	165	
** Fecal Coliform (/100 mls)	12	N/A	400	1	52	827	130	
Suspended Residue (mg/l)	12	0	N/A	N/A	5.5	44.0	24.6	
Turbidity (NTU)	12	N/A	50	0	6.4	40.0	25.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.10	0.05	
TKN_N (mg/l)	12	0	N/A	N/A	0.20	0.91	0.65	
NO2_NO3_N (mg/l)	12	0	10	0	0.19	0.45	0.38	
TP (mg/l)	12	0	N/A	N/A	0.07	0.30	0.19	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390000 Stream Class: CNSW Hannah Creek @ SR 1158 (Allens Crossroads Drive) near

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.3868 Longitude: -78.511

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	18	N/A	N/A	N/A	7.1	26.8	18.9
DO (mg/l)	17	N/A	4	2	1.5	10.7	6.8
*** pH (SU)	17	N/A	6 to 9	9	5.4	6.6	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	64	125	93
** Fecal Coliform (/100 mls)	12	N/A	400	4	36	927	181
Suspended Residue (mg/l)	12	1	N/A	N/A	2.6	10.0	6.1
Turbidity (NTU)	12	N/A	50	0	6.9	14.0	9.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.16	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.24	0.88	0.65
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.14	1.19	0.53
TP (mg/l)	12	1	N/A	N/A	0.02	0.43	0.08
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390800 Hannah Creek @ SR 1227 (Ivey Road) near Benson Stream Class: CNSW

County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.4025 **Longitude:** -78.4952

County: Johnston	Suo-Busin: 03020201			Lattituae: 35.4025 Longituae: -78.48				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	18	N/A	N/A	N/A	6.8	27.1	18.9	
DO (mg/l)	17	N/A	4	8	1.3	10.5	4.7	
*** pH (SU)	17	N/A	6 to 9	3	5.3	6.7	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	56	317	154	
** Fecal Coliform (/100 mls)	12	N/A	400	3	30	900	137	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.6	113.0	16.3	
Turbidity (NTU)	12	N/A	50	1	7.5	160.0	23.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.38	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.44	1.89	0.88	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	1.04	0.30	
TP (mg/l)	12	0	N/A	N/A	0.05	0.62	0.23	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5410000 Stream Class: CNSW Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill

Sub-Basin: 03020201 **Lattitude:** 35.342 **Longitude:** -78.2162 County: Johnston N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 16 N/A N/A N/A 7.3 27.0 20.3 DO (mg/l) 16 N/A 0 4.4 11.2 6.5 4 *** pH (SU) N/A 6 to 9 1 5.8 6.6 N/A 16 Conductivity (umhos/cm) 16 0 N/A N/A 63 122 87 ** Fecal Coliform (/100 mls) 2 38 936 170 11 N/A 400 5 N/A 2.5 11.0 4.9 Suspended Residue (mg/l) 11 N/A N/A 50 0 3.7 21.0 9.9 Turbidity (NTU) 11 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 11 0 N/A N/A 0.03 0.16 0.09 1 N/A N/A 0.20 1.01 0.73 11 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 N/A N/A 0.13 0.57 0.30 11 N/A N/A 0.02 0.18 0.07 TP (mg/l)11 1 2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1.000 0 Iron (ug/l) 0 N/A Manganese (ug/l) 0 N/A Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5500000 Falling Creek @ SR 1219 (Old Grantham Road) near Grantham Stream Class: WS-IV NSW

Longitude: -78.1282 County: Wayne **Sub-Basin:** 03020201 *Lattitude*: 35.3224

County: Wayne	Sub-Basin: 03020201			Lattitude: 35.3224 Longitude: -78.			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	7.4	25.9	19.5
DO (mg/l)	16	N/A	4	1	3.8	11.5	6.0
*** pH (SU)	16	N/A	6 to 9	4	5.3	7.0	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	69	160	111
** Fecal Coliform (/100 mls)	11	N/A	400	3	28	2,000	247
Suspended Residue (mg/l)	11	1	N/A	N/A	2.5	11.0	4.5
Turbidity (NTU)	11	N/A	50	0	3.1	19.0	8.7
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	1	N/A	N/A	0.02	0.12	0.07
TKN_N (mg/l)	11	0	N/A	N/A	0.23	1.69	0.93
NO2_NO3_N (mg/l)	11	0	10	0	0.14	2.47	0.84
TP (mg/l)	11	0	N/A	N/A	0.05	0.17	0.10
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5630000 Little River @ SR 2320, Riley Road near Zebulon Stream Class: HQW NSW

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8375 Longitude: -78.3599

County. Wake	Sub-Busin. 03020201			Luttitute. 55.6575 Longitute76.5			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.9	27.0	18.3
DO (mg/l)	17	N/A	4	0	4.2	10.5	6.9
*** pH (SU)	17	N/A	6 to 9	2	5.0	6.7	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	139	76
** Fecal Coliform (/100 mls)	12	N/A	400	0	15	310	85
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	5.9	3.6
Turbidity (NTU)	12	N/A	50	0	5.9	12.0	8.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.17	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.39	0.72	0.55
NO2_NO3_N (mg/l)	12	0	10	0	0.05	0.37	0.21
TP (mg/l)	12	0	N/A	N/A	0.03	0.08	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5685000 Stream Class: WS-V NSW Little River at Weaver Road near Bagley

Sub-Basin: 03020201 **Lattitude:** 35.5791 **Longitude:** -78.1723 County: Johnston

•						8	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.7	26.0	18.7
DO (mg/l)	17	N/A	4	0	4.3	11.1	7.6
*** pH (SU)	17	N/A	6 to 9	4	5.6	7.2	N/A
Conductivity (umhos/cm)	17	3	N/A	N/A	50	92	71
** Fecal Coliform (/100 mls)	12	N/A	400	0	28	380	81
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	9.7	6.0
Turbidity (NTU)	12	N/A	50	0	5.6	23.0	12.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.14	0.08
TKN_N (mg/l)	12	0	N/A	N/A	0.47	0.82	0.61
NO2_NO3_N (mg/l)	12	0	10	0	0.16	0.87	0.31
TP (mg/l)	12	1	N/A	N/A	0.02	0.11	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5750000 Stream Class: WS-V NSW Little River at SR 2339 (Bagley Road) near Lowell Mill

County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.5613 Longitude: -78.1594

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5613 Longitude: -78.19			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.9	25.9	18.5
DO (mg/l)	17	N/A	4	1	3.6	10.8	7.4
*** pH (SU)	17	N/A	6 to 9	4	5.0	7.0	N/A
Conductivity (umhos/cm)	17	3	N/A	N/A	50	159	80
** Fecal Coliform (/100 mls)	12	N/A	400	3	33	6,000	171
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	15.0	7.1
Turbidity (NTU)	12	N/A	50	0	7.2	23.0	13.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.21	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.46	1.45	0.71
NO2_NO3_N (mg/l)	12	0	10	0	0.21	0.49	0.30
TP (mg/l)	12	0	N/A	N/A	0.03	0.31	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5790000 Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C. Stream Class: C NSW

Longitude: -78.7697 County: Wake Sub-Rasin: 03020201 Lattitude: 35 7697

County: Wake	Sub-Basin: 03020201			Lo	attitude: 35.7	697 <i>Long</i>	Longitude: -78.76	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	5.5	25.8	17.9	
DO (mg/l)	17	N/A	4	0	4.6	12.0	7.2	
*** pH (SU)	17	N/A	6 to 9	1	5.7	6.8	N/A	
Conductivity (umhos/cm)	17	2	N/A	N/A	50	99	73	
** Fecal Coliform (/100 mls)	12	N/A	400	5	38	836	232	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	7.1	4.3	
Turbidity (NTU)	12	N/A	50	0	6.7	15.0	9.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.33	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.48	0.97	0.64	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.06	0.45	0.23	
TP (mg/l)	12	0	N/A	N/A	0.03	0.11	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5930000 Little River @ US 581 near Cherry Hospital Stream Class: CNSW

Sub-Basin: 03020201 Longitude: -78.0258 County: Wayne *Lattitude:* 35 393

County: Wayne	Sub-Basin: 03020201			L	<i>attitude:</i> 35.3	93 <i>Long</i>	Longitude: -78.02	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	18	N/A	N/A	N/A	5.5	27.4	19.4	
DO (mg/l)	17	N/A	4	0	5.4	11.3	7.6	
*** pH (SU)	17	N/A	6 to 9	3	5.5	6.9	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	54	150	100	
** Fecal Coliform (/100 mls)	12	N/A	400	4	31	7,000	197	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	29.0	8.6	
Turbidity (NTU)	12	N/A	50	0	4.8	35.0	12.7	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.16	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.26	1.01	0.70	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.23	0.78	0.47	
TP (mg/l)	12	0	N/A	N/A	0.06	0.46	0.14	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6010950 Stream Class: CNSW Walnut Creek @ SR 1730 (Saint Johns Church Road) near

Walnut Creek

County: Wayne **Sub-Basin:** 03020202 **Lattitude:** 35.2817 **Longitude:** -77.8686

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.5	27.6	20.2
DO (mg/l)	17	N/A	4	0	4.6	11.4	7.1
*** pH (SU)	17	N/A	6 to 9	5	5.6	6.5	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	74	93	85
** Fecal Coliform (/100 mls)	12	N/A	400	1	2	718	27
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	15.0	5.4
Turbidity (NTU)	12	N/A	50	0	3.1	16.0	7.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.21	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.46	0.95	0.69
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.17	2.77	1.27
TP (mg/l)	12	1	N/A	N/A	0.02	0.10	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6024000 Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs *Stream Class:* C NSW

Longitude: -77.846 **Sub-Basin:** 03020202 *Lattitude*: 35.229 County: Wayne

County: Wayne	Sul	Sub-Basin: 03020202			attitude: 35.2	29 <i>Long</i>	Longitude: -77.84	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.0	28.3	20.3	
DO (mg/l)	17	N/A	4	0	5.2	11.3	7.7	
*** pH (SU)	17	N/A	6 to 9	3	5.5	6.9	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	55	196	113	
** Fecal Coliform (/100 mls) 12	N/A	400	2	16	480	79	
Suspended Residue (mg/l)	12	0	N/A	N/A	4.0	47.0	17.0	
Turbidity (NTU)	12	N/A	50	0	8.8	50.0	21.5	
Chlorophyll-a (ug/l)	0	0	40	0				
$NH3_N (mg/l)$	12	0	N/A	N/A	0.02	0.18	0.07	
TKN_N (mg/l)	12	0	N/A	N/A	0.46	1.03	0.72	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.21	0.66	0.45	
TP (mg/l)	12	0	N/A	N/A	0.04	0.20	0.11	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044400 Stream Class: C Sw NSW Bear Creek at SR 1603, Washington Street near LaGrange

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.3137 **Longitude:** -77.8153

County: Lenoir	Sub-Basin: 03020202			L	<i>utuuae:</i> 35.3	137 Long	Longitude: -77.81	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	9.2	25.2	19.1	
DO (mg/l)	17	N/A	4	0	6.3	10.8	7.8	
*** pH (SU)	17	N/A	6 to 9	13	5.6	6.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	81	182	117	
** Fecal Coliform (/100 mls)	12	N/A	400	3	21	682	136	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.7	34.0	12.8	
Turbidity (NTU)	12	N/A	50	0	6.7	29.0	13.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.07	1.65	0.24	
TKN_N (mg/l)	12	0	N/A	N/A	0.57	2.70	1.05	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	1.26	3.43	2.31	
TP (mg/l)	12	0	N/A	N/A	0.05	0.68	0.19	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044500 Bear Creek @ SR 1311 (Bear Creek Road) near Kinston Stream Class: WS-IV Sw N

Sub-Basin: 03020202 **Lattitude:** 35.2489 **Longitude:** -77.7843 County: Lenoir

Country: Lonion	200	b Busin. C	0020202		5.2100 20118 111110		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.8	25.1	18.8
DO (mg/l)	17	N/A	4	0	6.0	10.9	7.9
*** pH (SU)	17	N/A	6 to 9	3	5.2	6.7	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	75	119	105
** Fecal Coliform (/100 mls)	12	N/A	400	1	33	900	123
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	15.0	7.7
Turbidity (NTU)	12	N/A	50	0	4.7	21.0	10.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.07	0.21	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.40	1.37	0.76
NO2_NO3_N (mg/l)	12	0	10	0	1.35	3.21	2.04
TP (mg/l)	12	0	N/A	N/A	0.07	0.29	0.14
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6055000 Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange Stream Class: C Sw NSW

Sub-Basin: 03020202 **Lattitude:** 35.3119 **Longitude:** -77.7313 County: Lenoir

County. Lenon	Sub-Dusin. 03020202			Lannaue. 55.5119 Longuale11.15				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.2	24.6	18.7	
DO (mg/l)	17	N/A	4	0	6.4	11.0	8.0	
*** pH (SU)	17	N/A	6 to 9	1	5.2	7.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	64	118	103	
** Fecal Coliform (/100 mls)	12	N/A	400	3	33	590	203	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	45.0	9.3	
Turbidity (NTU)	12	N/A	50	0	4.3	16.0	8.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.17	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.52	1.26	0.80	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	1.39	4.37	2.98	
TP (mg/l)	12	0	N/A	N/A	0.05	0.25	0.11	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6150000 Neuse River @ NC 11 Bypass at Kinston Stream Class: CNSW

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.2587 **Longitude:** -77.5835

Country: Lonon	200	o Busin. c	,0020202	2.		Long	11.00
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.5	28.6	20.2
DO (mg/l)	17	N/A	4	0	5.3	11.3	7.7
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	59	205	117
** Fecal Coliform (/100 mls)	12	N/A	400	0	13	380	73
Suspended Residue (mg/l)	12	0	N/A	N/A	3.7	48.0	15.2
Turbidity (NTU)	12	N/A	50	1	13.0	55.0	21.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.21	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.39	1.15	0.75
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.27	0.73	0.56
TP (mg/l)	12	0	N/A	N/A	0.06	0.27	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6250000 Neuse River @ NC 55 near Graingers Stream Class: CNSW

County: Lenoir **Sub-Basin:** 03020202 **Lattitude:** 35.2957 **Longitude:** -77.4962

•						8	
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.5	28.4	20.1
DO (mg/l)	17	N/A	4	0	5.2	11.4	7.8
*** pH (SU)	17	N/A	6 to 9	1	5.6	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	65	212	127
** Fecal Coliform (/100 mls)	12	N/A	400	0	18	250	66
Suspended Residue (mg/l)	12	0	N/A	N/A	4.4	23.0	11.8
Turbidity (NTU)	12	N/A	50	0	6.6	30.0	16.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.11	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.54	0.97	0.72
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.28	0.77	0.60
TP (mg/l)	12	0	N/A	N/A	0.04	0.21	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6410000 Little Creek @ NC 97 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 **Lattitude:** 35.8279 **Longitude:** -78.3025

country. Trans	200	o Busin. c	0020200	2.		Zio Zong	70.00
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.2	23.8	16.7
DO (mg/l)	17	N/A	4	5	2.2	10.9	5.9
*** pH (SU)	17	N/A	6 to 9	1	5.7	6.7	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	58	114	98
** Fecal Coliform (/100 mls)	12	N/A	400	5	48	1,500	331
Suspended Residue (mg/l)	12	2	N/A	N/A	2.7	18.0	6.7
Turbidity (NTU)	12	N/A	50	0	8.3	20.0	13.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.47	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.31	1.33	0.65
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.10	0.51	0.29
TP (mg/l)	12	0	N/A	N/A	0.04	0.24	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6450000 Little Creek @ NC 39 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 *Lattitude*: 35.8125 **Longitude:** -78.2681

Country: Wake	200	b Busin. c	0020200	2.		TEO LONG	70.20
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.1	25.6	18.2
DO (mg/l)	17	N/A	4	0	5.8	11.1	7.8
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	120	491	307
** Fecal Coliform (/100 mls)	12	N/A	400	2	62	773	166
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	8.7	4.8
Turbidity (NTU)	12	N/A	50	0	3.9	38.0	13.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.28	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.41	0.87	0.65
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.51	4.45	1.22
TP (mg/l)	12	0	N/A	N/A	0.04	0.37	0.18
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6500000 Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner Stream Class: C NSW

Longitude: -78.1895 **Sub-Basin:** 03020203 *Lattitude*: 35.7301 County: Wilson

County: Wilson	Sub-Basin: 03020203			Lo	<i>itude: -</i> 78.18		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.3	25.6	17.3
DO (mg/l)	17	N/A	4	1	3.8	11.9	7.0
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.0	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	50	176	104
** Fecal Coliform (/100 mls)	12	N/A	400	1	46	2,900	161
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	9.8	5.1
Turbidity (NTU)	12	N/A	50	0	5.8	29.0	13.5
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.04	2.07	0.24
TKN_N (mg/l)	12	0	N/A	N/A	0.34	3.26	0.82
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.10	0.33	0.22
TP (mg/l)	12	0	N/A	N/A	0.06	0.20	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6680000 County: Nash Sub-Rasin: 03020203 Lattitude: 35 7519

County: Nash	Su	b-Basin: 0	3020203	La	attitude: 35.7	519 <i>Long</i>	Longitude: -78.1597	
				N >Ref				
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.7	27.0	18.3	
DO (mg/l)	17	N/A	4	6	2.5	11.3	5.7	
*** pH (SU)	17	N/A	6 to 9	1	5.7	6.8	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	50	81	66	
** Fecal Coliform (/100 mls)	12	N/A	400	0	28	300	61	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.4	11.0	5.5	
Turbidity (NTU)	12	N/A	50	0	9.6	22.0	13.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.23	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.43	1.21	0.74	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.06	0.35	0.17	
TP (mg/l)	12	1	N/A	N/A	0.02	0.13	0.07	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6765000 Stream Class: C Sw NSW Contentnea Creek at Willow Springs drive near Dixie

Sub-Basin: 03020203 **Lattitude:** 35.6838 County: Wilson Longitude: -77.941

County. Wilson	Su	v-Dusin.	3020203	L	инине. 55.0	boso Long	шие11.94
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.2	29.3	20.5
DO (mg/l)	17	N/A	4	0	4.4	12.1	7.3
*** pH (SU)	17	N/A	6 to 9	5	5.0	7.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	62	200	88
** Fecal Coliform (/100 mls)	12	N/A	400	1	8	540	60
Suspended Residue (mg/l)	12	1	N/A	N/A	2.7	22.0	6.0
Turbidity (NTU)	12	N/A	50	0	4.5	28.0	13.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.16	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.58	0.92	0.71
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.06	0.61	0.25
TP (mg/l)	12	0	N/A	N/A	0.02	0.11	0.06
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6890000 Stream Class: C Sw NSW Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson County: Wilson **Sub-Basin:** 03020203 *Lattitude*: 35.6429 **Longitude:** -77.8902

County: Wilson	Sub-Basin: 03020203			Lattitude: 35.6429 Longitude: -//			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.9	28.6	20.2
DO (mg/l)	17	N/A	4	0	5.4	12.2	7.8
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.0	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	58	292	137
** Fecal Coliform (/100 mls)	12	N/A	400	1	13	727	61
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	9.6	5.1
Turbidity (NTU)	12	N/A	50	0	4.6	30.0	11.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.06	0.39	0.15
TKN_N (mg/l)	12	0	N/A	N/A	0.52	0.99	0.75
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.28	1.14	0.55
TP (mg/l)	12	0	N/A	N/A	0.04	0.24	0.11
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7210000 Stream Class: C Sw NSW Contentnea Creek @ NC 58 near Stantonsburg

Sub-Basin: 03020203 **Lattitude:** 35.5861 County: Wilson **Longitude:** -77.8111

County. Wilson	Suo-Dusin. 03020203			Luminue. 55.5001 Longinue17.0				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.4	28.2	19.6	
DO (mg/l)	17	N/A	4	0	4.7	11.7	7.3	
*** pH (SU)	17	N/A	6 to 9	1	5.8	7.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	59	216	118	
** Fecal Coliform (/100 mls)	12	N/A	400	0	15	290	73	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	6.7	4.3	
Turbidity (NTU)	12	N/A	50	0	5.4	23.0	11.6	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.19	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.54	0.98	0.72	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.32	0.92	0.58	
TP (mg/l)	12	0	N/A	N/A	0.06	0.14	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7240000 Toisnot Swamp @ SR 1539 (Sand Pit Road) near Stantonsburg Stream Class: C Sw NSW

Sub-Basin: 03020203 **Lattitude:** 35.5976 **Longitude:** -77.7947 County: Wilson N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 6.7 26.6 18.3 6.7 DO (mg/l) 17 N/A 0 4.6 11.5 4 *** pH (SU) 17 N/A 6 to 9 3 5.7 6.9 N/A Conductivity (umhos/cm) 17 0 N/A N/A 61 114 86 ** Fecal Coliform (/100 mls) 1 23 682 67 12 N/A 400 5 N/A 2.5 10.0 4.0 Suspended Residue (mg/l) 12 N/A 12 N/A 50 0 6.6 19.0 11.3 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 0 N/A N/A 0.02 0.22 0.08 12 0 N/A N/A 0.61 1.08 0.81 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 N/A N/A 0.05 0.89 0.33 12 12 0 N/A N/A 0.08 0.16 0.11 TP (mg/l)2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 88 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1.000 0 Iron (ug/l) 0 N/A Manganese (ug/l) 0 N/A Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7325000 Nahunta Swamp @ NC 58 near Contentnea Stream Class: C Sw NSW

Sub-Basin: 03020203 **Lattitude:** 35.5081 County: Greene **Longitude:** -77.7455

County. Greene	Suo-Dusin. 03020203			Luniume. 55.5001 Longitude11.14				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.0	25.0	18.0	
DO (mg/l)	17	N/A	4	0	4.9	11.7	7.7	
*** pH (SU)	17	N/A	6 to 9	3	5.8	6.9	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	74	115	103	
** Fecal Coliform (/100 mls)	12	N/A	400	4	16	1,300	156	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	22.0	5.9	
Turbidity (NTU)	12	N/A	50	0	5.3	23.0	11.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.04	0.20	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.50	0.96	0.69	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.77	5.07	1.89	
TP (mg/l)	12	0	N/A	N/A	0.05	0.15	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7330000 Contentnea Creek @ US 13 near Snow Hill Stream Class: C Sw NSW

Sub-Basin: 03020203 *Lattitude*: 35.4585 **Longitude:** -77.6753 County: Greene

County: Grooms	Due						
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.8	27.7	19.4
DO (mg/l)	17	N/A	4	0	4.8	11.6	7.4
*** pH (SU)	17	N/A	6 to 9	3	5.8	7.0	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	56	137	101
** Fecal Coliform (/100 mls)	12	N/A	400	1	16	791	49
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	7.5	4.2
Turbidity (NTU)	12	N/A	50	0	5.8	18.0	10.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.26	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.51	0.88	0.69
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.43	1.39	0.83
TP (mg/l)	12	0	N/A	N/A	0.08	0.14	0.10
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7690000 Stream Class: C Sw NSW Little Contentnea Creek @ SR 1218 (Chinquapin Road) near

County: Pitt **Sub-Basin:** 03020203 **Lattitude:** 35.5881 **Longitude:** -77.5416

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.0	26.9	19.0
DO (mg/l)	17	N/A	4	4	0.7	11.5	5.3
*** pH (SU)	17	N/A	6 to 9	3	5.4	7.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	57	332	141
** Fecal Coliform (/100 mls)	12	N/A	400	3	36	2,200	136
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	11.0	4.3
Turbidity (NTU)	12	N/A	50	0	4.3	17.0	9.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	0	N/A	N/A	0.08	0.88	0.28
TKN_N (mg/l)	12	0	N/A	N/A	0.74	2.10	1.23
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.23	5.22	1.35
TP (mg/l)	12	0	N/A	N/A	0.08	0.89	0.28
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7740000

Longitude: -77.4854 County: Pitt **Sub-Basin:** 03020203 *Lattitude*: 35 4567

County: Pitt	Sub-Basin: 03020203			L	attitude: 35.4	567 <i>Long</i>	Longitude: -77.48	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.1	27.5	19.1	
DO (mg/l)	17	N/A	4	0	4.0	11.3	6.6	
*** pH (SU)	17	N/A	6 to 9	4	5.7	7.1	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	68	219	133	
** Fecal Coliform (/100 mls)	12	N/A	400	1	54	736	107	
Suspended Residue (mg/l)	12	7	N/A	N/A	2.5	14.0	4.1	
Turbidity (NTU)	12	N/A	50	0	4.0	16.0	8.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	0	N/A	N/A	0.03	0.41	0.16	
TKN_N (mg/l)	12	0	N/A	N/A	0.40	1.26	0.84	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.12	1.14	0.53	
TP (mg/l)	12	0	N/A	N/A	0.10	0.30	0.20	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7850000 Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp *Stream Class:* C Sw NSW dock upstream of the bridge.

County: Craven **Sub-Basin:** 03020202 *Lattitude*: 35.31368 *Longitude*: -77.30287

	N>Ref or									
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average			
Temperature (C)	17	N/A	N/A	N/A	6.4	28.2	20.0			
DO (mg/l)	17	N/A	4	0	4.6	11.4	7.5			
*** pH (SU)	17	N/A	6 to 9	2	5.4	7.9	N/A			
Conductivity (umhos/cm)	17	0	N/A	N/A	68	209	118			
** Fecal Coliform (/100 mls)	12	N/A	400	0	3	380	50			
Suspended Residue (mg/l)	12	0	N/A	N/A	3.3	52.0	10.7			
Turbidity (NTU)	12	N/A	50	1	5.7	60.0	17.3			
Chlorophyll-a (ug/l)	12	3	40	0	1.00	6.66	2.97			
NH3_N (mg/l)	12	0	N/A	N/A	0.02	0.11	0.06			
TKN_N (mg/l)	12	0	N/A	N/A	0.50	1.33	0.78			
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.34	0.82	0.58			
TP (mg/l)	12	0	N/A	N/A	0.05	0.25	0.13			
Cadmium (ug/l)	0	0	2	0						
Chromium (ug/l)	0	0	50	0						
Copper (ug/l)	0	0	7	0						
Nickel (ug/l)	0	0	88	0						
Lead (ug/l)	0	0	25	0						
Zinc (ug/l)	0	0	50	0						
****Aluminum (ug/l)	0	0	87	0						
Iron (ug/l)	0	0	1,000	0						
Manganese (ug/l)	0	0	N/A	N/A						
Arsenic (ug/l)	0	0	10	0						
Mercury (ug/l)	0	0	0.012	N/A						

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J8870000 Stream Class: SB Sw NSW Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Bern

County: Craven **Sub-Basin:** 03020204 *Lattitude*: 35.10159 **Longitude:** -77.03708

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.5	29.4	21.3
DO (mg/l)	17	N/A	5	6	3.6	11.5	6.7
*** pH (SU)	17	N/A	6.8 to 8.5	4	3.9	7.8	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	99	16,900	4,818
** Fecal Coliform (/100 mls)	12	N/A	400	0	5	270	27
Suspended Residue (mg/l)	12	4	N/A	N/A	2.5	14.0	5.5
Turbidity (NTU)	12	N/A	25	0	4.3	21.0	9.5
Chlorophyll-a (ug/l)	12	1	40	0	1.00	25.10	8.07
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.29	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.51	1.17	0.86
NO2_NO3_N (mg/l)	12	1	10	0	0.02	0.83	0.31
TP (mg/l)	12	0	N/A	N/A	0.07	0.27	0.12
Cadmium (ug/l)	0	0	5	0			
Chromium (ug/l)	0	0	20	0			
Copper (ug/l)	0	0	3	0			
Nickel (ug/l)	0	0	8	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	86	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.025	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.