Distributed Management of Stormwater Solids as a Nutrient Reduction Strategy

A. R. Rubin, Professor Emeritus

NCSU BAE

Presentation to Lower Neuse Basin Association

May 2021

Overview

- Why consider distributed stormwater management infrastructure in Tar-Pamlico Basin
- What are basin inserts and what is Trash Guard (TG)
- Examples of selected benefits
- Results
- O and M

Why Distributed Management for SW Solids

- Removes pollutants close to source
- Targets specific areas where trash, solids or nutrients are an issue
- Allows potential beneficial use for solids in yard and leaf compost programs
- Optimum performance requires periodic maintenance
- Cost effective
 - Lower cost per pound of pollutant removed

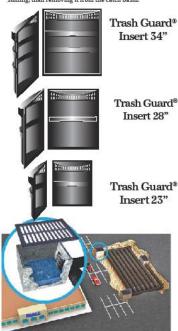
Why consider distributed approach to stormwater management

- Distributed approach traps pollutants at or near their source
- Historically the Tar-Pamlico Basin and the Neuse Basin have been listed on state 303d list and TMDL's have been established for N and P
- NCAC 02B .0703 and .0730 contain criteria for nutrient management (.0730 specific to Tar-Pamlico Basin)
- 10 March 2021, NCEMC item reiterated integrating NPDES and Stormwater programs
- 29 October 2019 memo established nutrient reduction credits available through stormwater management (Culpepper, 2019)

2019 Culpepper Memorandum

- Storm Drain Cleaning is defined as the practice of periodic removal of gross solids and associated material from storm drain catch basins.
- To determine the nutrient removal credit, the weight of material collected is converted to a representative weight of nitrogen and phosphorus removed from the system.
- RC = W x CF
 - RC is reduction credit, W is weight of solids removed, CF is conversion factor
 - W is the weight of solids removed from a basin
 - CF_n is for nitrogen and is 0.023 pounds of N per 1000 pounds removed
 - CF_p is for phosphorus and is 0.002 pounds of P per 1000 pounds removed Source: nutrient reduction practices and crediting, DWR

Basin management and inserts


- Stormwater solids refers to combined material collected from unaltered catch basins or catch basins with a gross solids collection device installed. These devices are designed to alter catch basins to store more material than unaltered catch basins.
- Basin inserts refer to the devices deliberately installed as part of a distributed storm basin management effort

Trash Guard is a locally manufactured basin insert

- Screen
 - Initially
- Filter
 - As solids accumulate

Underground Storm Water Storage

Trash Guard, Inc. redesigned our product for underground storage systems and named it Trash Guard Plus. Rather than open orifices at the top for conventional catch basins, we designed it to stop large floatables, such as Plastic Bags, from entering the storage facility through the large orifices. Floatables large enough to pass through the conventional orifices could clog the entrance to the underground storage facility causing water back ups. Removing from the entrance to the storage facility could be much more expensive, and time consuming, than removing it from the catch basin.

Manufacturer

P.O. Box 10 Roseboro, NC 28382 866-520-4362 Fax: 910-525-9950 Email: trashguard@att.net

www.trash-guard.com

National Distributor

2831 Cardwell Road Richmond, VA 28234 800-448-3636 Fax: 804-743-5535 Email: dkelley@acfenvironmental.com

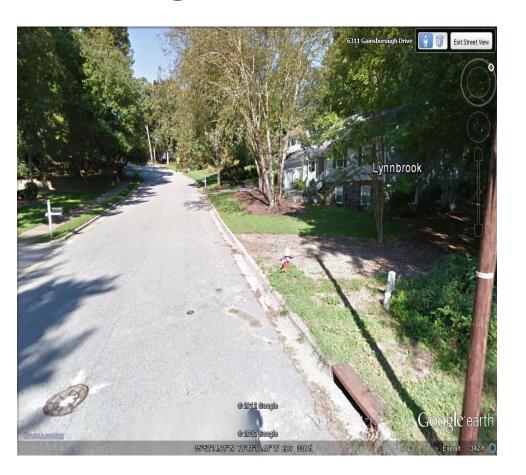
www.acfenvironmental.com

Trash Free
Stormwater Discharge
Toll Free
1-866-520-4362
www.trash-guard.com

Impacts

- Visual, litter removal
- Organic Matter
- Chemical (nutrients)
- Sediment and regulated metals

Impacts


- Visual (trash)
- Organic Matter
- Chemical (nutrients)
- Sediment and regulated metals

Success Story - Gainsborough Dr.

- 2 acre drainage area
- Enters catch-basin at base of hill
- Significant vegetation
- Drainage directly into creek

Vac-All 20 minutes to set up and remove 1000 pounds of SW solids

Gainsborough Dr

'05-'08: 3000 lb Solids '09: Vac-Al (1000 est)

Winter '11: 1000 lb solids

removed

Spring 2012: 1000 VacAll

(est)

Solids Removed, Gainsborough Dr, Mar 2011

	1	2	3	AVERAGE
TOC (lb/K-Lb)	211	150	444	268 lb/K - Lb
TN (lb/K Lb	12	9	24	15 lb/K-Lb
P (Lb/K-Lb)	1.5	1.7	2.2	1.8 lb/K-Lb

Solids and Nutrients Removed, 2012 VacAll Demo

Site	TN	IN	NH3	NO3	Р	К	Zn	Cu	Pb	CD	С
Ave	5123	214	121	85	535	683	86.3	26	8.2	0.5	105330
Mass	5.123	0.21	0.12	0.085	0.53	0.68	0.09	0.03	0.01	0.00	105.3

Immediate drainage area

• 2 basins in immediate area

3rd Order Stream to Snipe Creek

- 70 plus basins
- 50 in similar landscape
- Potential catchment significant
- Pollutant removal significant (as lb/yr)
 - 50,000 pounds organics
 - 750 pounds of N
 - 90 pounds of P
 - Vac-All requires 20 minutes per basin per year

Thank you

- A. R. Rubin
- NCSU-BAE
- Rubin@ncsu.edu

