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Neuse river basin

Figure i General Map of the Entive Neuse River Basin
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Traditional understanding of mechanisms for BNR
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Carbon availability drives nutrient removal

e Carbon for denitrification
¢ VFA as energy source for PAOs

e Easier TN and TP removal with more
influent carbon

e Supplemental carbon needed to drive
low limits where influent carbon is
insufficient
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Shortcut
Nitrogen

MABR

Developmental areas to better manage carbon for
nutrient removal

S2EBPR
Low DO
BNR

o Alternative EBPR pathway development (WRF) Project 4975 (Pl — Leon Downing)
¢ Development as part of Water Research Foundation (WRF) Project 4975 (Pl —
Leon Downing)

¢ Continued growth in industry
¢ Next focus: settleability and formal design practices
¢ Development as part of WRF Project 5083 (CoPI — Leon Downing)

 Application to mainstream processes
e Current functional design in Australia

* Enhanced opportunities for simultaneous nitrification / denitrification
o Pilot in Heyward, CA
o Full scale installations in Israel

Goal: get more pounds of nitrogen removal per pound of influent carbon, while
also achieving phosphorus removal

Black &

Veatch

How does S2EBPR

impact TN
Removal?
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S2EBPR for reliable and cost
effective biological phosphorus
removal
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Historical focus on accumulibacter

Recently gained a much better understanding of the
role/importance of other PAOs

Evolution of EBPR....

Early success was with sidestream
ML fermentation

But mainstream configurations
became the standard, and relied on
influent VFA
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Profile through westbank reactor

Denitrifying PAOs can
denitrify and uptake P under

anoxic conditions
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Sidestream enhanced biological phosphorus removal
DIVERSIFIES carbon source for EBPR

PE

Side-Stream RAS
Fermentation (SSR)

1
5]
7 W

Side-Stream RAS Fermentation w/
Additional Carbon (SSRC)

PE

Move the anaerobic zone to the
sidestream with a portion of RAS

external carbon

Relies on the carbon contained within
biomass to drive PAO battery charging
3. Ifinsufficient carbon in biomass, add

Black &
Veatch

WREF 4975 is focused on practical considerations for sidestream
enhanced biological phosphorus removal

e 21 participating utilities globally
* $1.3 M research project value

¢ Identified as one of the top 10 Water
Innovations for 2020

e Principal Investigator: Leon Downing, B&V

e Co-Pl: April Gu, University of Cornell

* Goals:
¢ Develop design criteria for the processes
¢ |dentify operational tools for EBPR

¢ Recommend process modeling guidelines
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Design guideline development is focused on consolidating
information from as many facilities as possible

—— How much RAS do we divert?
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Unmixed In-Line
Mixed Liquor
Fermentation (UMIF)

How big is our fermenter?

How does carbon addition impact sizing?

Side-Stream Side-Stream
Mixed Liquor Fermentation RAS Fermentation w/
(S5M) additional Carbon {SSRC)

The influent carbon impacts the biomass produced relative
to influent phosphorus concentration

Preliminary curves are based on
Danish experience for 85% (solid) and
98% (dashed) removal
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© Things to consider
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Carbon source becomes the biomass, liberating influent

carbon for other uses

Wheaton SD S2EBPR Performance:
P performance driven by solids into
sidestream fermenter
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Side-Stream RAS
Fermentation (SSR)

' EBPR metabolism
-~ driven by biomass in
sidestream
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What does the

future of DO look

like?
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Low DO operation has been shown to benefit
aeration, denitrification, and maintain settling rates

Percent SVI Decrease with
Low DO 3%

Percent Airflow Reduction
with Low DO 19%

Percent TN Removal NN 63%
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How do we understand nitrification capacity?




Nitrification rate testing throughout the day, every day,
generates a large amount of nitrification rate data

& High DO
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Minimal nitrate formation, high level of SND

e Aeration manually controlled for DO
targets

e Understand nitrification rate

e Understand SND impacts of DO

A different nitrifying community does occur at low DO

conditions

0.07

0.06

0.05

0.04

0.03

Microbial Fraction (-)

0.02

Oct 2013 - Conv... E——
Oct 2013 - Conv... .

W nitrospiraceae spp.

W nitrospira spp.
nitrobacter spp.

mother AOB

W nitrosomonas spp.

W nitrosococcus spp.

-._lIl,IIII.
200 /00 3 320V Y
o oownNoaoozgoogas
s d T2 33 S o
222822502 8K
3 8 3 3 2 a2 3%5 5
o2 - 2-289cc0c0o028 38
N ' 929 1m VU R ANV
S~ ¥ Z d 0o ¢cc o EE
] °Sc32 553299
$ 55 S5 828§ g
IR s T ASE
> > 3 ¢ s z oo
) zZ 5 s
= = -

Long term next generation sequencing:
progression towards non-conventional
nitrifiers (Microbe Detectives)

100 pm

Fluorescence in situ hybridization: Quantitative PCR:

Minimal conventional AOB, NOB cluster Confirmation of dominance of Nitrospira
on the inner floc/granule (indicator of k- nitrosa, a confirmed comammox (CMX)
strategist) (Wells Lab, Northwestern organism (Noguera Lab, University of

University)
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Shortcut Nitrogen
Removal

Four pillars of nitrite shunt
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Based on global academic work — high loading rates and residual NH4
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Producing alternating aerobic and anoxic reaction volume
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Dynamic Current
70+ - Dynamic Current, Low DO

NOB suppression
AOB growth

Nitrite ‘sink” with carbon

Lower effluent TN for the same influent
COD
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The MABR supports total nitrogen removal.

aerobic/ anoxic/ anoxic/
nitrifying denitrifying denitrifying
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Oxygen is consumed within the biofilm, supporting anoxic
conditions for denitrification in outer biofilm and/or bulk liquid.

Black &
atch

Demonstration testing has been advancing the MABR for

nearly a decade
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Side-by-side testing in Isreal demonstrates benefit of
MABR for carbon

Effluent Nitrate (mg/L)
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Key conclusions

e Carbon drivers BNR

* Finding more efficient ways to use
carbon is key for the future

Diversification of carbon sources
Reduction in carbon needs

e Many process focus on operations, not
technology “widgets”
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Your Local Contacts

Greg Knight | Principal Process Engineer | KnightGlJ@bv.com | (770) 521-8129

Mike Osborne | Senior PM & Client Director | OsborneJM@bv.com | (704) 510-8451
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