Lower Neuse Basin Association P.O. Box 1410 Clayton, North Carolina 27528-1410

Annual Monitoring Report 2024

Submitted By: Karle Sweet Chairman

Prepared By: Haywood M. Phthisic, III, Executive Director

Lower Neuse Basin Association Contact Information

Officers of the Lower Neuse Basin Association

Chairman -

Charles Smithwick
Contentnea MSD
P. O. Box 477
Grifton, N. C.
252.413.8898
cmsd100@embargmail.com

Treasurer -

Jimmy Pridgen City of Wilson P.O. Box 8005 Cary, N.C. 27512 - 8005 919.469.4095 donald.smith@townofcary.org

Vice Chairman -

Edward Buchan City of Raleigh P. O. Box 590 Raleigh, N. C. 27602 919.996.3471 Edward.Buchan@raleighnc.gov

Secretary -

Associates:

Executive Director -

Haywood M. Phthisic, III P.O. Box 1410 Clayton, N.C. 27528-1410 919.796.8049 exec.director@lnba.net

Association Counsel -

Daniel F. McLawhorn 1706 St. Mary's Street Raleigh, N.C. 27608 919.612.4520

hgdunn@poynerspruill.com

Coalition Web Site Address - https://www.lnba.net

Lower Neuse Basin Association April 25, 2025

Members and Contact Information

A complete list of LNBA delegates for 2024 follows in Section I.

Monitoring Stations for 2024

A complete list of the monitoring stations with station numbers, descriptions, coordinates, county, sub basin and stream classification included in Section II.

The Agreement between the LNBA and the Division of Water Resources was renewed in 2024. The effective date was August 1, 2024 through July 31, 2029. There were several sampling stations, added, deleted, or moved to a better location for safety reasons or environmental conditions.

Quality Assurance/Quality Control Issues

Waypoint Analytical has a contract with the LNBA to collect and analysis designated sites from Falls Lake Dam to the Neuse River Estuary under the MOA with DWR. Waypoint Analytical reported no quality assurance or quality control issues in 2024.

Waypoint Analytical reported it completed and passed proficiency testing for its satellite lab (field testing equipment) in 2024.

NCDEQ- DWR did not conduct a field review and inspection in 2024.

On April 3, 2007, the Division of Water Quality suspended the collection and analysis of total recoverable metals as required by the monitoring coalitions. The metals are no longer collected as part of the LNBA MOA agreement.

The Waypoint Analytical contact information and sampling methods/protocols are listed in Section III with the sampling errors and omissions for 2024.

Special Projects

The Lower Neuse Basin Association, in cooperation with its sister organization, the Neuse River Compliance Association, has continued with its partnership with Dr. Hans Pearl of the University of North Carolina at Chapel Hill, Institute of Marine Science. The two associations support the MODMON monitoring program of the Neuse River Estuary. The associations began assisting with this research in July 2006.

Suggested Changes

There are no suggested changes at this time.

Statistical Analysis of Data

Statistical analyses of the data for each monitoring station are included in Section IV.

Section I

LNBA Members and Contact Information

NPDES Permit #	LNBA Permittees Ownership and Facility	Authorized Representative and Title	County	Region	HUC (8 Digit)
NC0003417	Duke Energy Progress, LLC H. F. Lee Energy Complex	Jeffery D. Hines General Manager	Wayne	WaRO	3020201
NC0003760	CovationBio, Inc.	David Suggs WWTF Manager	Lenoir	WaRO	3020202
NC0020389	Town of Benson - Benson WWTP	Kimberly Picket Public Utility Director	Johnston	RRO	3020201
NC0021253	City of Havelock - Havelock WWTP	Chris McGee City Manager	Craven	WaRO	3020204
NC0021644	Town of LaGrange - LaGrange WWTP	Shawn Condon Town Manager	Lenoir	WaRO	3020202
NC0023906	City of Wilson - Wilson WWTP	Grant Goings City Manager	Wilson	RRO	3020203
NC0023949	City of Goldsboro - Goldsboro WWTP	Matthew Livingston City Manager	Wayne	WaRO	3020202
NC0024236	City of Kinston - Kinston Regional WWTF	Steve Miller Director of Public Services	Lenoir	WaRO	3020202
NC0025348	City of New Bern - New Bern WWTP	Foster Hughes City Manager	Craven	WaRO	3020204
NC0025453	Town of Clayton - Little Creek WWTP	Rich Cappola Town Manager	Johnston	RRO	3020201
NC0029033	City of Raleigh - Neuse River WWTP	Edward Buchan Assistant Utility Director	Wake	RRO	3020201
NC0029572	Town of Farmville - Farmville WWTP	David Hodgkins Town Manager	Pitt	WaRO	3020203
NC0030716	Johnston County Central Johnston County Regional WWTP	Rick J. Hester County Manager	Johnston	RRO	3020201
NC0030759	City of Raleigh - Smith Creek WWTP	Edward Buchan Assistant Utility Director	Wake	RRO	3020201
NC0032077	Contentnea Metropolitan Sewerage District Contentnea MSD WWTP	Charles M. Smithwick, Jr. District Manager	Pitt	WaRO	3020203
NC0048879	Town of Cary - North WWTP	Jonathan Bulla North Cary WRF Manager	Wake	RRO	3020201
NC0064050	Town of Apex - Apex WRF	Randal E. Vosburg Town Manager	Wake	RRO	3020201
NC0064891	Town of Kenly - Kenly Regional WWTP	Tony Sears Interim Town Manager	Johnston	RRO	3020201
NC0065102	Town of Cary - South WWTP	Jarrod Buchanan South Cary WRF Manager	Wake	RRO	3020201
NC0066516	Town of Fuquay Varina Terrible Creek WWTP	Michael Wagner Town Manager	Wake	RRO	3020201
NC0020842	Town of Snow Hill Snow Hill WWTF	April Vinson Town Manager	Greene	WaRO	3020203
NC0079316	City of Raleigh - Little Creek WWTP	Edward Buchan Assistant Utility Director	Wake	RRO	3020203
NC0084735	Johnston County Johnston County WTP	Rick J. Hester County Manager	Johnston	RRO	3020201

Lower Neuse Basin Members and Contact Information for 2024								
Member	Contact	Address	Phone	Mobile Phone	Email			
Duke Energy Progress	Mike Graham	1677 Old Smithfield Rd.	919.580.3983		Mike.Graham2@duke-energy.com			
		Goldsboro, NC						
City of Goldsboro	Robert Sherman	PO Drawer A	919.735.6075		RSherman@goldsboronc.gov			
-	Bobby Edwards	Goldsboro, NC 27533	919.735.3320		bedwards@goldsboronc.gov			
City of Havelock	Rick Day	PO Drawer 368	252.444.6409		rday@havelocknc.us			
-	-	Havelock, NC 28532						
City of Kinston	Ben Overton	PO Box 339 Kinston, NC 28501	252.939.3733	910.409.1537	Benjamin.Overton@kinstonnc.gov			
City of New Bern	Jordan Hughes	PO Box 1129	252.639.7527	252.341.5448	hughesj@newbern-nc.org			
,	Art Hough	New Bern, NC 28563	252.639.7555		hougha@newbernnc.gov			
City of Raleigh	Ed Buchan	PO Box 590		919.760.0688	Edward.Buchan@raleighnc.gov			
	Erica Bailey	Raleigh, NC 27602	919.996.3713	919.623.9314	Erika.Bailey@raleighnc.gov			
City of Wilson	Jimmy Pridgen	PO Box 10	252.399.2374	252.399.2519	jpridgen@wilsonnc.org			
	Kyle Manning	Wilson, NC 27894	252.296.3416		kmanning@wilsonnc.org			
Contentnea MSD	Chuck Smithwick	PO Box 477	252.524.5584	252.413.8898	cmsd100@embarqmail.com			
	Brian Pridgen	Grifton, NC 28530			'brian.pridgen.cmsd@gmail.com'			
Johnston County	Chandra Farmer	PO Box 2263	919.209.8333	919.795.6138	chandra.farmer@johnstonnc.com			
	Dan Wall	Smithfield, NC 27577	919.209.8333	919.795.1889	dan.wall@johnstonnc.com			
CovationBio, Inc.	Shelby Arellano	4693 Highway 11 North	252.643.7124	252.521.6726	Shelby.Arellano@covationbio.com			
	Ray Burgos	Grifton, NC 28530	252.643.7002		Ray.Burgos@covationbio.com			
Town of Benson	Kim Pickett	PO Box 69	919.894.3553		kpickett@townofbenson.com			
	Brian Leavitt	Benson, NC 27504	919.894.2373	919.902.9599	bleavitt@townofbenson.com			
Town of Cary	Jonathan Bulla	PO Box 8005	919.677.0850		Jonathan.Bulla@carync.gov			
•	Jarrod Buchanan	Cary, NC 27512-8005	919.779.0697		jarrod.buchanan@townofcary.org			

Member	Contact	Address	Phone	Mobile Phone	Email
Town of Farmville	David Hodgkins	3672 N. Main St.	252.753.6700		dhodgkins@farmville-nc.com
	James Shoulders	Farmville, NC 27828-0086	252.814.6348		James.shoulders@suez.com
Town of Fuguay-Varina	Mike Wagner	401 Old Honeycutt Rd.	919.753.1013	919.625.3524	mwagner@fuquay-varina.org
	Heather Adams	Fuquay-Varina, NC 27526	919.294.7170		htadams@fuquay-varina.org
Town of Kenly	Tony Sears	PO Box 519	919.284.2116		town.manager@townofkenly.com
	Phillip Smith	Kenly, NC 27542		252.955.2423	phillip.smith@townofkenly.com
Town of La Grange	James Sutton	PO Box 368	252.566.3186		jwsutton@lagrangenc.com
	Shawn Condon	La Grange, NC 28551			smcondon@lagrangenc.com
Town of Apex	Lori Avent	PO Box 250	919.387.7055	919.753.8486	lori.avent@apexnc.org
-	Michael Deaton	Apex, NC 27502	919.249.3413		Michael.Deaton@apexnc.org
Town of Clayton	Josh Baird	PO Box 879	919.553.1536		jbaird@townofclaytonnc.org
	David White	Clayton, NC 27520	919.553.1530		dwhite@townofclayton.org
Town of Snow Hill	April Vinson	908 SE 2nd Street	252.747.3414		manager@snowhillnc.com
		Snow Hill, N.C. 28580			
Associated Parties					
Executive Director	Haywood Phthisic	PO Box 1410	919.796.8049	919.796.8049	exec.director@Inba.net
		Clayton, N.C. 27528-1410			
Association Counsel	Dan McLawhorn	1706 St. Mary's Street Raleigh, NC 27608	919.621.8195	919.621.8195	dan@dfm-lawyer.com
Waypoint Analytical	Ron Boquist	PO Box 7085, 114 Oakmont E Greenville, NC 27835-7085	252.756.6208 252.756.6208		rboquist@waypointanalytical.com

Section II

Monitoring Station Information

List Of Monitoring Stations

Station	Location	County	Lattitude	Longitude	Class	Sub-Basin
J2230000	Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest	Wake	35.9182	-78.5348	C NSW	03020201
J2330000	Neuse River at SR 2215 (Buffalo Road) near Neuse	Wake	35.8479	-78.5302	C NSW	03020201
J3310000	Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh	Wake	35.8041	-78.6081	C NSW	03020201
J3970000	Walnut Creek at SR 2551 (Barwell Road) near Raleigh	Wake	35.7493	-78.5345	C NSW	03020201
J4050000	Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh	Wake	35.7266	-78.5139	C NSW	03020201
J4080000	Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale	Wake	35.7309	-78.4776	C NSW	03020201
J4115000	Marks Creek @ Neuse River Trail near Archers Lodge	Johnston	35.693264	-78.438694	C NSW	03020201
J4130000	Neuse River @ SR 1700 (Covered Bridge Road) near Archer's Lodge	Johnston	35.6749	-78.4364	WS-V NSW	03020201
J4170000	Neuse River @ at NC 42E of Clayton	Johnston	35.6473	-78.4056	WS-IV NSW	03020201
J4370000	Neuse River at US 70 Business @ Smithfield	Johnston	35.5128	-78.3498	WS-IV NSW	03020201
J4414000	Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia	Wake	35.7187	-78.7527	WS-III NSW	03020201
J4500000	Swift Creek @ Indian Creek former discharge location near Garner, N.C.	Wake	35.6476	-78.6041	C NSW	03020201
J4510500	Swift Creek at SR 1525, Cornwallis Road near Clayton	Johnston	35.5999	-78.5356	C NSW	03020201
J4511000	White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.	Johnston	35.6176	-78.5281	C NSW	03020201
J4520000	Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C.	Johnston	35.5515	-78.46	C NSW	03020201
J4580000	Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston County Airport	Johnston	35.5442	-78.397	C NSW	03020201
J4670000	Middle Creek off of Anchor Creek Way at Holly Springs Greenway Bridge in	Wake	35.671389	-78.823333	NSW	03020201
J4690000	Middle Creek @ SR 1152 (Holly Springs Road) near Holly Springs	Wake	35.6609	-78.8042	C NSW	03020201
J4868000	Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks	Wake	35.6356	-78.7279	C NSW	03020201

Tuesday, April 15, 2025 Page 1 of 3

Station	Location	County	Lattitude	Longitude	Class	Sub-Basin
J4980000	Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs	Wake	35.6091	-78.6866	C NSW	03020201
J5002000	Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson	Johnston	35.5626	-78.5756	C NSW	03020201
J5007000	Middle Creek at SR 1504, Crantock Road in Johnston County	Johnston	35.52233	-78.46694	NSW	03020201
J5010000	Middle Creek @ NC 210 near Smithfield	Johnston	35.5075	-78.4013	C NSW	03020201
J5170000	Black Creek @ SR 1162 (Black Creek Road) near Four Oaks	Johnston	35.46925	-78.45681	C NSW	03020201
J5250000	Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill	Johnston	35.3741	-78.1962	WS-IV NSW	03020201
J5390000	Hannah Creek @ SR 1158 (Allens Crossroads Drive) near Benson	Johnston	35.3868	-78.511	C NSW	03020201
J5390800	Hannah Creek @ SR 1227 (Ivey Road) near Benson	Johnston	35.4025	-78.4952	C NSW	03020201
J5410000	Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill	Johnston	35.342	-78.2162	C NSW	03020201
J5500000	Falling Creek @ SR 1219 (Old Grantham Road) near Grantham	Wayne	35.3224	-78.1282	WS-IV NSW	03020201
J5630000	Little River @ SR 2320, Riley Road near Zebulon	Wake	35.8375	-78.3599	HQW NSW	03020201
J5685000	Little River at Weaver Road near Bagley	Johnston	35.5791	-78.1723	WS-V NSW	03020201
J5750000	Little River at SR 2339 (Bagley Road) near Lowell Mill	Johnston	35.5613	-78.1594	WS-V NSW	03020201
J5790000	Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C.	Wake	35.7697	-78.7697	C NSW	03020201
J5930000	Little River @ US 581 near Cherry Hospital	Wayne	35.393	-78.0258	C NSW	03020201
J6010950	Walnut Creek @ SR 1730 (Saint Johns Church Road) near Walnut Creek	Wayne	35.2817	-77.8686	C NSW	03020202
J6024000	Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs	Wayne	35.229	-77.846	C NSW	03020202
J6044400	Bear Creek at SR 1603, Washington Street near LaGrange	Lenoir	35.3137	-77.8153	C Sw NSW	03020202
J6044500	Bear Creek @ SR 1311 (Bear Creek Road) near Kinston	Lenoir	35.2489	-77.7843	WS-IV Sw NSW	03020202
J6055000	Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange	Lenoir	35.3119	-77.7313	C Sw NSW	03020202
J6150000	Neuse River @ NC 11 Bypass at Kinston	Lenoir	35.2587	-77.5835	C NSW	03020202

Tuesday, April 15, 2025

Page 2 of 3

Station	Location	County	Lattitude	Longitude	Class	Sub-Basin
J6250000	Neuse River @ NC 55 near Graingers	Lenoir	35.2957	-77.4962	C NSW	03020202
J6410000	Little Creek @ NC 97 near Zebulon	Wake	35.8279	-78.3025	C NSW	03020203
J6450000	Little Creek @ NC 39 near Zebulon	Wake	35.8125	-78.2681	C NSW	03020203
J6500000	Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner	Wilson	35.7301	-78.1895	C NSW	03020203
J6680000	Turkey Creek @ SR 1101 (Claude Lewis Rodd) near Middlesex	Nash	35.7519	-78.1597	C NSW	03020203
J6765000	Contentnea Creek at Willow Springs drive near Dixie	Wilson	35.6838	-77.941	C Sw NSW	03020203
J6890000	Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson	Wilson	35.6429	-77.8902	C Sw NSW	03020203
J7210000	Contentnea Creek @ NC 58 near Stantonsburg	Wilson	35.5861	-77.8111	C Sw NSW	03020203
J7240000	Toisnot Swamp @ SR 1539 (Sand Pit Road) near Stantonsburg	Wilson	35.5976	-77.7947	C Sw NSW	03020203
J7325000	Nahunta Swamp @ NC 58 near Contentnea	Greene	35.5081	-77.7455	C Sw NSW	03020203
J7330000	Contentnea Creek @ US 13 near Snow Hill	Greene	35.4585	-77.6753	C Sw NSW	03020203
J7690000	Little Contentnea Creek @ SR 1218 (Chinquapin Road) near Farmville	Pitt	35.5881	-77.5416	C Sw NSW	03020203
J7740000	Little Contentnea Creek @ SR 1110 (HWY 903) near Scuffleton	Pitt	35.4567	-77.4854	C Sw NSW	03020203
J7850000	Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp dock upstre	Craven	35.31368	-77.30287	C Sw NSW	03020202
J8870000	Trent River @ the Alfred Cunningham Drawbridge on E. Front Street, New Be	Craven	35.10159	-77.03708	SB Sw NSW	03020204

Tuesday, April 15, 2025

Page 3 of 3

Section III

Contract Laboratory Information, Audits, MOA Revisions, and Sample Errors and Omissions

Contract Laboratory Providing All Sampling and Analysis

Waypoint Analytical, Inc.

Ron Boquist, General Manger 114 Oakmont Dr. Greenville, N.C. 27835-7085 252.756.6208 rboquist@waypointanalytical.com

Waypoint Analytical - River Basin Method Codes 2024

Parameter	EPA / SM code	Jan - Aug Rev./ date	Sept - Dec Rev./ date
Chlorophyll_a (ug/l)	EPA 445.0	Rev. 1.2 - 1997	Rev. 1.2 - 1997
Conductivity (umhos/cm)	SM 2510 B	2011	2021
DO (mg/l)	SM 4500 OG	2016	2021
Fecal Coliform	SM 9222 D	2015	2015
Hardness, Total	SM 2340 C	2011	2021
NH3_N (mg/l)	EPA 350.1	Rev. 2.0 - 1993	Rev. 2.0 - 1993
NO2_NO3_N (mg/l)	EPA 353.2	Rev. 2.0 - 1993	Rev. 2.0 - 1993
pH (su)	SM 4500 HB	2011	2021
Suspended Residue,			
(mg/l)	SM 2540 D	2015	2020
Temp (° C)	SM 2550B	2010	2010
TKN_N (mg/l)	EPA 351.2	Rev. 2.0 - 1993	Rev. 2.0 - 1993
TP (mg/l)	EPA 365.4	Rev. 2.0 - 1974	Rev. 2.0 - 1974
Turbidity (NTU)	SM 2130 B	2011	2020

DIVISION OF WATER RESOURCES LABORATORY CERTIFICATION BRANCH

In accordance with the provisions of N.C.G.S. 143-215.3 (a) (1), 143-215.3 (a)(10) and NCAC 2H.0800:

2024

Waypoint Analytical - Greenville

Is hereby certified to perform environmental analysis as listed on the Laboratory's Certified Parameter List and report monitoring data to DEQ for compliance with NPDES effluent, surface water, groundwater, soil and pretreatment regulations.

By reference 15A NCAC 2H .0800 is made a part of this certificate.

This certificate does not guarantee validity of data generated, but indicates the methodology, equipment, quality control procedures, records, and proficiency of the laboratory have been examined and found to be acceptable.

12/31/2024

Certificate No. 10

Sodd Crawford
Todd Crawford

North Carolina Wastewater/Groundwater Laboratory Certification Certified Parameters Listing

Lab Name: Waypoint Analytical - Greenville

Address: 114 Oakmont Dr.

Greenville, NC 27858

Certificate Number: 10

Effective Date: 1/1/2024

Expiration Date: 12/31/2024

Date of Last Amendment: 1/26/2024

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

INORGANIC ALKALINITY

SM 2320 B-2011 (Aqueous)

BACTERIA - COLIFORM FECAL

SM 9221 E-2014 (MPN) (Aqueous)

SM 9221 E-2014 (MPN) (Biosolids)

SM 9222 D-2015 (MF) (Aqueous)

BACTERIA - COLIFORM TOTAL

SM 9222 B-2015 (MF) (Aqueous)

SM 9221 B-2014 (MPN) (Aqueous)

BACTERIA - E. coli

IDEXX Colilert-18® (MPN) (Aqueous)

BACTERIA - ENTEROCOCCI

IDEXX Enterolert® (MPN) (Aqueous)

BOD

SM 5210 B-2016 (Aqueous)

CBOD

SM 5210 B-2016 (Aqueous)

CHLORIDE

SM 4500 Cl⁻ B-2011 (Aqueous)

CHLOROPHYLL a

EPA 445.0, Rev. 1.2 (Fluorometric) (Agueous)

COD

Hach 8000 (Aqueous)

COLOR, ADMI

SM 2120 F-2011 (ADMI) (Aqueous)

COLOR, PC

SM 2120 B-2011 (PtCo) (Aqueous)

CONDUCTIVITY

SM 2510 B-2011 (Aqueous)

CYANIDE

SM 4500 CN⁻ E-2016 (Total) (Aqueous)

SM 4500 CN⁻ E-2016 (Total) (Non-Aqueous)

DISSOLVED OXYGEN

SM 4500 O G-2016 (Aqueous)

FLUORIDE

SM 4500 F⁻ C-2011 (Aqueous) HARDNESS TOTAL - WET CHEM SM 2340 C-2011 (Aqueous)

EPA 350.1, Rev. 2.0, 1993 (Aqueous)

NITROGEN, NITRATE

NITROGEN, AMMONIA

(NO3 + NO2 EPA 353.2, Rev. 2.0, 1993) - (NO2 EPA 353.2, Rev. 2.0, 1993) (Aqueous)

NITROGEN, NITRITE

EPA 353.2, Rev. 2.0, 1993 (Aqueous)

NITROGEN, NO3 + NO2

EPA 353.2, Rev. 2.0, 1993 (Aqueous) NITROGEN, TOTAL KJELDAHL

EPA 351.2, Rev. 2.0, 1993 (Aqueous)

OIL & GREASE

EPA 1664 Rev. B (Aqueous) ORGANIC CARBON, TOTAL SM 5310 C-2014 (Aqueous)

pН

SM 4500 H+B-2011 (Aqueous)

PHOSPHATE, ORTHO

SM 4500 P E-2011 (Aqueous)

PHOSPHORUS, TOTAL EPA 365.4, 1974 (Aqueous)

RESIDUE, DISSOLVED 180 C

SM 2540 C-2015 (Aqueous) ASTM D5907-13 (Aqueous)

RESIDUE, SETTLEABLE

SM 2540 F-2015 (Aqueous) RESIDUE, SUSPENDED

SM 2540 D-2015 (Aqueous)

RESIDUE, TOTAL

SM 2540 B-2015 (Aqueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

North Carolina Wastewater/Groundwater Laboratory Certification **Certified Parameters Listing**

Lab Name: Waypoint Analytical - Greenville

Address: 114 Oakmont Dr.

Greenville, NC 27858

Certificate Number: 10 Effective Date: 1/1/2024 **Expiration Date:** 12/31/2024 Date of Last Amendment: 1/26/2024

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

SM 2540 G-2015 (Non-Aqueous)

SALINITY

SM 2520 B-2011 (Aqueous)

SULFATE

SM 4500 SO4² E-2011 (Aqueous)

SULFIDE

SM 4500 S²⁻ D-2011 (Aqueous)

TEMPERATURE

SM 2550 B-2010 (Aqueous)

TURBIDITY

SM 2130 B-2011 (Aqueous)

METAL

ALUMINUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

ANTIMONY

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

ARSENIC

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

BARIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

BERYLLIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

CADMIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

CALCIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

CHROMIUM TOTAL

EPA 200.7, Rev. 4.4, 1994 (Aqueous) EPA 200.7, Rev. 4.4, 1994 (Non-Agueous)

EPA 200.8, Rev. 5.4, 1994 (Agueous)

SW-846 6020 B (Aqueous)

COBALT

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

COPPER

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

IRON

EPA 200.7, Rev. 4.4, 1994 (Agueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Agueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

LEAD

EPA 200.7, Rev. 4.4, 1994 (Agueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

MAGNESIUM

EPA 200.7, Rev. 4.4, 1994 (Agueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

MANGANESE

EPA 200.7, Rev. 4.4, 1994 (Agueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

North Carolina Wastewater/Groundwater Laboratory Certification Certified Parameters Listing

Lab Name: Waypoint Analytical - Greenville

Address: 114 Oakmont Dr.

Greenville, NC 27858

Certificate Number: 10

Effective Date: 1/1/2024

Expiration Date: 12/31/2024

Date of Last Amendment: 1/26/2024

The above named laboratory, having duly met the requirements of 15A NCAC 2H.0800, is hereby certified for the measurement of the parameters listed below.

CERTIFIED PARAMETERS

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

MERCURY

EPA 245.1, Rev. 3.0, 1994 (Aqueous)

SW-846 7471 B (Non-Aqueous)

EPA 1631 E (Aqueous)

MOLYBDENUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

NICKEL

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

POTASSIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Agueous)

SELENIUM

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

SILVER

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

SODIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

THALLIUM

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

TIN

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

VANADIUM

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

ZINC

EPA 200.7, Rev. 4.4, 1994 (Aqueous)

EPA 200.7, Rev. 4.4, 1994 (Non-Aqueous)

EPA 200.8, Rev. 5.4, 1994 (Aqueous)

SW-846 6020 B (Aqueous)

ORGANIC

BASE NEUTRAL/ACID, ORGANICS

EPA 625.1, Dec 2016 (Aqueous)

SW-846 8270 E (Aqueous)

CHLORINATED ACID HERBICIDES

SW-846 8151 A (Aqueous)

PESTICIDES, ORGANOCHLORINE

SW-846 8081 B (Aqueous)

PURGEABLE, ORGANICS

EPA 624.1, Dec 2016 (Aqueous)

SW-846 8260 D (Aqueous)

This certification requires maintance of an acceptable quality assurance program, use of approved methodology, and satisfactory performance on evaluation samples. Laboratories are subject to civil penalties and/or decertification for infractions as set forth in 15A NCAC 2H.0807.

Amendment # 1 DWR LNBA MOA 2024 - 2029

Amendment to the Memorandum of Agreement Between the North Carolina Division of Water Resources and the Lower Neuse Basin Association

WHEREAS, the NORTH CAROLINA DIVISION OF WATER RESOURCES (DWR), the LOWER NEUSE BASIN ASSOCIATION (LNBA), and NPDES PERMITTEES have entered into a MEMORANDUM OF AGREEMENT (MOA) dated August 1, 2024; and

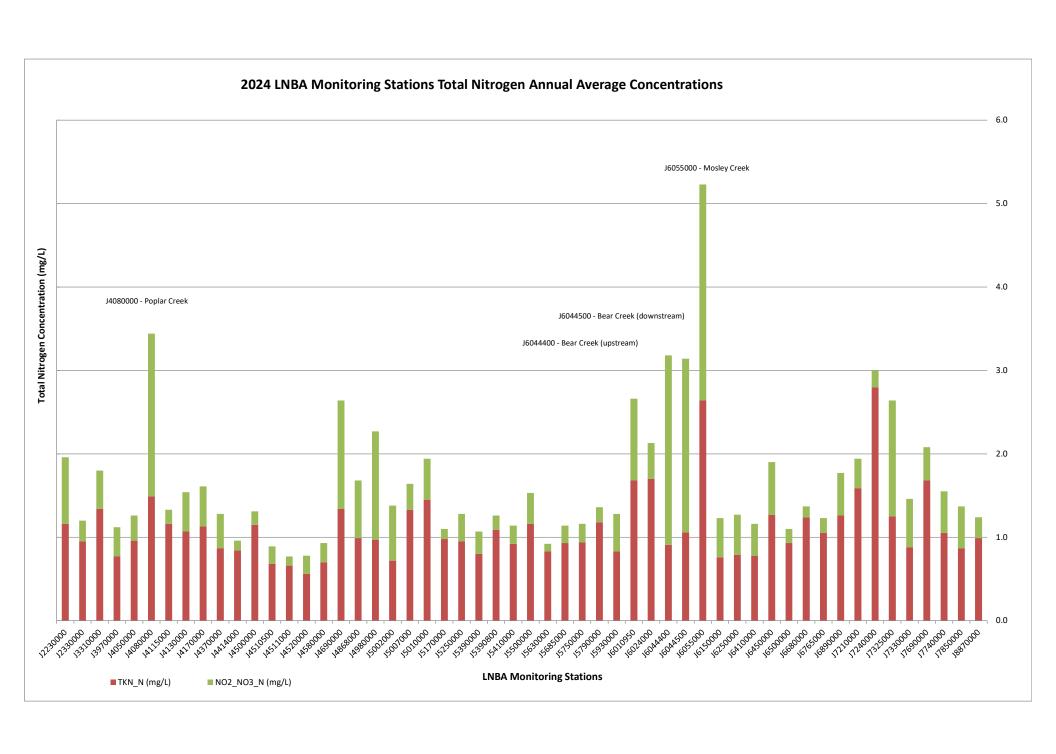
WHEREAS, the MOA allows modification to add new monitoring stations to the MOA by written consent of the DWR and the LNBA;

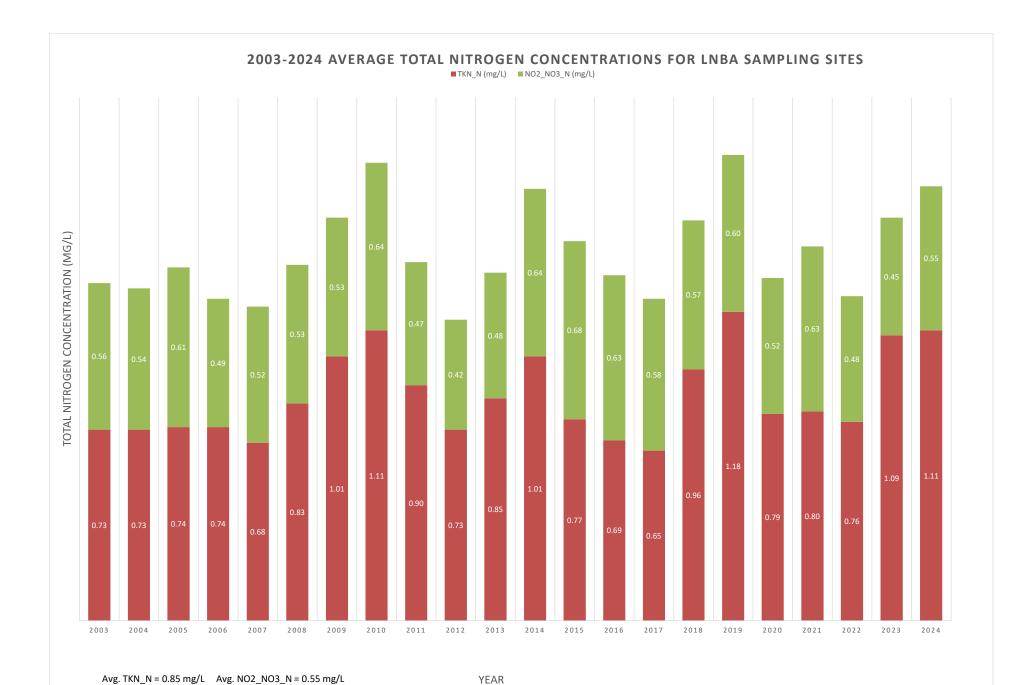
NOW THEREFORE, the MOA is hereby amended as follows:

The LNBA and its agents shall perform the collection and analyses of instream water quality monitoring data at station J5007000, Middle Creek at SR 1504 Crantock Rd in Johnston County in lieu of J5010000 until the bridge is replaced and sampling can resume there, for the parameters, locations and frequencies specified in Table 2 of the MOA.

IN WITNESS WHEREOF, the parties have caused the execution of this instrument by authority duly given, to be effective as of the date executed by DWR.

LOW	VER NEUSE BASIN ASSOCIATION	NC	WATER RESOURCES
By:	Signed by: Charles Smithwick	By:	Richard E. Rogers, Jr. Richard E. Rogers, Jr.
	Charles Smithwick		Richard E. Rogers, Jr.
	Chairman		Director
	Lower Neuse Basin Association		North Carolina Division of Water
			Resources
Date:	1/21/2025	Date:	1/20/2025


LNBA Sample Errors/Omissions for 2024


Date: 4/24/2025

January, 2024 J5630000	1/30/2024	Unable to access- Road Closed
Falaman, 2004		
February, 2024 J4690000	2/8/2024	Unable to access - Bridge construction
March, 2024		
J4520000	3/4/2024	Unable to access - Road construction
J5630000	3/21/2024	Unable to access - Road construction
April, 2023		
J4115000	4/12/2024	Unable to collect sample - low stream flow
J5630000	4/17/2024	Unable to access - Road construction
J5790000	4/17/2024	Unable to access - Road construction
May, 2024		
J4868000	5/23/2024	Unable to access - Road construction
June, 2024		
J4080000	6/10/2024	Unable to collect sample - low stream flow
J4115000	6/10/2024	Unable to collect sample - low stream flow
J4690000	6/6/2024	Unable to access - Road construction
J5010000	6/20/2024	Unable to access - Road construction
J5630000	6/10/2024	Unable to access - Road construction
J5630000	6/20/2024	Unable to access - Road construction
July, 2024		
J4115000	7/3/2024	Unable to access- stream nearly dry
J5010000	7/18/2024	Unable to access - Road construction
J5630000	7/1/2024	Unable to access - Bridge construction
J5630000	7/15/2024	Unable to access - Bridge construction
August, 2024		
J5390800	8/8/2024	Unable to access- flooding
J6890000	8/19/2024	Unable to access - Road construction
October, 2024		
J4690000	10/17/2024	Unable to access - Road construction
J6250000	10/15/2024	Unable to access - Bridge construction
November, 2024		
J4690000	11/16/2024	Unable to access - Road construction
J5002000	11/6/2024	Unable to access - Road construction
December, 2024		
J4690000	12/2/2024	Unable to access - Road construction

Section IV

Statistical Analysis of Sampling Data

Station J2230000 Smith Creek @ SR 2045 (Burlington Mill Road) near Wake Forest *Stream Class*: C NSW

County: Wake **Sub-Basin:** 03020201 *Lattitude*: 35.9182 **Longitude:** -78.5348

County: Trans	~~	Dusiii.	.0020201	2.		TOL LONG	70.00
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.8	27.5	19.2
DO (mg/l)	17	N/A	4	0	6.6	10.0	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.4	8.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	65	152	111
** Fecal Coliform (/100 mls)	10	N/A	400	7	167	5,100	848
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	250.0	31.9
Turbidity (NTU)	12	N/A	50	1	3.3	250.0	33.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.30	0.10
TKN_N (mg/l)	12	0	N/A	N/A	0.26	3.71	1.16
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.21	2.68	0.80
TP (mg/l)	12	0	N/A	N/A	0.04	1.48	0.25
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J2330000 Stream Class: CNSW Neuse River at SR 2215 (Buffalo Road) near Neuse

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8479 **Longitude:** -78.5302

Sub-Busin: 03020201			Lattitude: 35.8479 Longitude: -78.53			
N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
17	N/A	N/A	N/A	8.6	31.3	20.6
17	N/A	4	0	6.5	9.3	7.9
17	N/A	6 to 9	0	6.3	7.8	N/A
17	0	N/A	N/A	59	170	90
12	N/A	400	2	8	3,300	105
12	0	N/A	N/A	4.2	100.0	23.5
12	N/A	50	1	5.6	130.0	23.5
0	0	40	0			
12	3	N/A	N/A	0.02	0.33	0.11
12	0	N/A	N/A	0.43	1.71	0.95
12	0	N/A	N/A	0.07	0.45	0.25
12	0	N/A	N/A	0.04	4.72	0.48
0	0	2	0			
0	0	50	0			
0	0	7	0			
0	0	88	0			
0	0	25	0			
0	0	50	0			
0	0	87	0			
0	0	1,000	0			
0	0	N/A	N/A			
0	0	10	0			
0	0	0.012	N/A			
	N 17 17 17 17 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0	N N <rl 0="" 0<="" 12="" 17="" 3="" a="" n="" o="" td=""><td>17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 0 N/A 12 N/A 400 12 0 N/A 12 0 N/A 12 0 0 0 0 40 12 3 N/A 12 0 N/A 12 0 N/A 12 0 N/A 0 0 2 0 0 50 0 0 50 0 0 88 0 0 50 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A 0 0 87 0 0 N/A 0 0 N/A 0 0 1,000 0 0 N/A <</td><td>N N Ref N > Ref 17 N/A N/A N/A 17 N/A 4 0 17 N/A 6 to 9 0 17 0 N/A N/A 12 N/A 400 2 12 N/A 400 2 12 0 N/A N/A 12 N/A 50 1 0 0 40 0 12 3 N/A N/A 12 0 N/A N/A 0 0 2 0 0 0 7 0 0 0 88 0 0 0 50 0 0 0 5</td><td>N N<rl< th=""> Ref or N N > Ref or N Minimum 17 N/A N/A N/A 8.6 17 N/A 4 0 6.5 17 N/A 6 to 9 0 6.3 17 0 N/A N/A 59 12 N/A 400 2 8 12 0 N/A N/A 4.2 12 N/A 50 1 5.6 0 0 40 0 0 12 3 N/A N/A 0.02 12 3 N/A N/A 0.43 12 0 N/A N/A 0.04 12 0 N/A N/A 0.04 0 0 1 N/A 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</rl<></td><td>N N Ref or N N Minimum Maximum 17 N/A N/A N/A 8.6 31.3 17 N/A 4 0 6.5 9.3 17 N/A 6 to 9 0 6.3 7.8 17 0 N/A N/A 59 170 12 N/A 400 2 8 3,300 12 0 N/A N/A 4.2 100.0 12 N/A 50 1 5.6 130.0 0 0 40 0 0 0 12 N/A 50 1 5.6 130.0 0 0 40 0 0 33 12 3 N/A N/A 0.43 1.71 12 0 N/A N/A 0.07 0.45 12 0 N/A N/A 0.04 4.72 0 0</td></rl>	17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 0 N/A 12 N/A 400 12 0 N/A 12 0 N/A 12 0 0 0 0 40 12 3 N/A 12 0 N/A 12 0 N/A 12 0 N/A 0 0 2 0 0 50 0 0 50 0 0 88 0 0 50 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A 0 0 87 0 0 N/A 0 0 N/A 0 0 1,000 0 0 N/A <	N N Ref N > Ref 17 N/A N/A N/A 17 N/A 4 0 17 N/A 6 to 9 0 17 0 N/A N/A 12 N/A 400 2 12 N/A 400 2 12 0 N/A N/A 12 N/A 50 1 0 0 40 0 12 3 N/A N/A 12 0 N/A N/A 0 0 2 0 0 0 7 0 0 0 88 0 0 0 50 0 0 0 5	N N <rl< th=""> Ref or N N > Ref or N Minimum 17 N/A N/A N/A 8.6 17 N/A 4 0 6.5 17 N/A 6 to 9 0 6.3 17 0 N/A N/A 59 12 N/A 400 2 8 12 0 N/A N/A 4.2 12 N/A 50 1 5.6 0 0 40 0 0 12 3 N/A N/A 0.02 12 3 N/A N/A 0.43 12 0 N/A N/A 0.04 12 0 N/A N/A 0.04 0 0 1 N/A 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</rl<>	N N Ref or N N Minimum Maximum 17 N/A N/A N/A 8.6 31.3 17 N/A 4 0 6.5 9.3 17 N/A 6 to 9 0 6.3 7.8 17 0 N/A N/A 59 170 12 N/A 400 2 8 3,300 12 0 N/A N/A 4.2 100.0 12 N/A 50 1 5.6 130.0 0 0 40 0 0 0 12 N/A 50 1 5.6 130.0 0 0 40 0 0 33 12 3 N/A N/A 0.43 1.71 12 0 N/A N/A 0.07 0.45 12 0 N/A N/A 0.04 4.72 0 0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3310000 Stream Class: CNSW Crabtree Creek @ SR 2921, North Raleigh Blvd, Raleigh

Sub-Basin: 03020201 County: Wake **Lattitude:** 35.8041 **Longitude:** -78.6081

County. Wake	Sub-Dusin. 03020201			Luittude. 55.8041 Longitude78.00				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	9.2	30.1	20.5	
DO (mg/l)	17	N/A	4	0	6.4	11.2	8.2	
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	64	307	159	
** Fecal Coliform (/100 mls)	11	N/A	400	4	96	2,200	397	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.5	150.0	28.2	
Turbidity (NTU)	12	N/A	50	2	4.3	140.0	31.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.30	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.33	2.88	1.34	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.23	1.25	0.46	
TP (mg/l)	12	0	N/A	N/A	0.03	0.52	0.19	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J3970000 Stream Class: CNSW Walnut Creek at SR 2551 (Barwell Road) near Raleigh

Sub-Basin: 03020201 *Lattitude*: 35.7493 County: Wake **Longitude:** -78.5345

County. Wake	Su	Suo-Busin. 03020201			unnune: 55.7495 Longunue: -76.55			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.4	28.1	19.1	
DO (mg/l)	17	N/A	4	0	6.4	9.8	7.9	
*** pH (SU)	17	N/A	6 to 9	0	6.5	7.7	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	79	194	127	
** Fecal Coliform (/100 mls)	11	N/A	400	2	52	1,700	201	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.6	20.0	8.8	
Turbidity (NTU)	12	N/A	50	0	7.3	36.0	14.3	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.11	0.05	
TKN_N (mg/l)	12	0	N/A	N/A	0.26	1.16	0.77	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.15	0.55	0.35	
TP (mg/l)	12	0	N/A	N/A	0.03	1.84	0.24	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4050000 Neuse River @ SR 2555 (Auburn Knightdale Road) near Raleigh *Stream Class:* C NSW

Longitude: -78.5139 County: Wake Sub-Rasin: 03020201 Lattitude: 35 7266

County: Wake	Sub-Basin: 03020201			Lo	attitude: 35.7	7266 <i>Long</i>	Longitude: -78.51	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.6	30.2	20.3	
DO (mg/l)	17	N/A	4	0	6.4	9.7	7.9	
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.8	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	63	133	101	
** Fecal Coliform (/100 mls)	11	N/A	400	0	34	390	140	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.9	50.2	18.2	
Turbidity (NTU)	12	N/A	50	0	5.0	45.0	18.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.35	0.12	
TKN_N (mg/l)	12	0	N/A	N/A	0.31	1.95	0.96	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.13	0.52	0.30	
TP (mg/l)	12	0	N/A	N/A	0.04	0.28	0.12	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4080000 Stream Class: CNSW Poplar Creek @ SR 2049 (Bethlehem Road) near Knightdale County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.7309 **Longitude:** -78.4776

County: Wake	Su	D-Basin: О	3020201	L	uttituae: 35.7	Longituae: -78.47		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	9.2	25.9	18.0	
DO (mg/l)	17	N/A	4	0	6.7	10.4	8.4	
*** pH (SU)	17	N/A	6 to 9	0	6.5	8.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	85	266	147	
** Fecal Coliform (/100 mls)	11	N/A	400	5	220	2,600	449	
Suspended Residue (mg/l)	11	0	N/A	N/A	2.8	74.0	18.7	
Turbidity (NTU)	11	N/A	50	0	4.1	34.0	14.7	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	11	3	N/A	N/A	0.02	0.42	0.12	
TKN_N (mg/l)	11	0	N/A	N/A	0.58	7.28	1.49	
NO2_NO3_N (mg/l)	11	0	N/A	N/A	1.03	2.90	1.95	
TP (mg/l)	11	0	N/A	N/A	0.12	1.59	0.51	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4115000 Stream Class: CNSW Marks Creek @ Neuse River Trail near Archers Lodge

Sub-Basin: 03020201 Lattitude: 35.693264 Longitude: -78.43869 County: Johnston

•						8	
				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.2	26.6	18.2
DO (mg/l)	17	N/A	4	0	6.8	10.0	8.4
*** pH (SU)	17	N/A	6 to 9	0	6.5	8.2	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	56	112	85
** Fecal Coliform (/100 mls)	10	N/A	400	8	310	1,420	626
Suspended Residue (mg/l)	9	0	N/A	N/A	3.8	52.0	18.8
Turbidity (NTU)	9	N/A	50	0	4.4	50.0	16.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	9	4	N/A	N/A	0.02	0.13	0.05
TKN_N (mg/l)	9	0	N/A	N/A	0.61	3.43	1.16
NO2_NO3_N (mg/l)	9	0	N/A	N/A	0.08	0.30	0.17
TP (mg/l)	9	1	N/A	N/A	0.02	0.18	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4130000 Stream Class: WS-V NSW Neuse River @ SR 1700 (Covered Bridge Road) near Archer's

Sub-Basin: 03020201 County: Johnston **Lattitude:** 35.6749 **Longitude:** -78.4364

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.7	29.6	20.4
DO (mg/l)	17	N/A	4	0	6.4	9.3	7.7
*** pH (SU)	17	N/A	6 to 9	0	6.4	8.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	87	257	162
** Fecal Coliform (/100 mls)	12	N/A	400	3	46	900	161
Suspended Residue (mg/l)	12	0	N/A	N/A	3.5	83.3	25.3
Turbidity (NTU)	12	N/A	50	1	4.1	60.0	20.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.50	0.13
TKN_N (mg/l)	12	0	N/A	N/A	0.48	2.90	1.07
NO2_NO3_N (mg/l)	12	0	10	0	0.19	0.92	0.47
TP (mg/l)	12	0	N/A	N/A	0.08	0.82	0.22
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4170000 Neuse River @ at NC 42E of Clayton Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude:** 35.6473 County: Johnston **Longitude:** -78.4056

County: Commission	~"	o Dusiii. o	0020201	2.		20118	70.10
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.8	29.1	20.2
DO (mg/l)	17	N/A	4	0	4.7	11.9	7.5
*** pH (SU)	17	N/A	6 to 9	0	6.5	7.5	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	87	262	161
** Fecal Coliform (/100 mls)	12	N/A	400	4	23	2,000	176
Suspended Residue (mg/l)	12	0	N/A	N/A	3.1	103.0	28.1
Turbidity (NTU)	12	N/A	50	2	3.8	75.0	24.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.38	0.11
TKN_N (mg/l)	12	0	N/A	N/A	0.53	3.01	1.13
NO2_NO3_N (mg/l)	12	0	10	0	0.25	0.96	0.48
TP (mg/l)	12	0	N/A	N/A	0.10	0.62	0.25
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	25	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4370000 Stream Class: WS-IV NSW Neuse River at US 70 Business @ Smithfield

County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.5128 **Longitude:** -78.3498

County: Johnston	Su	D-Basin: О	13020201	L	uttituae: 35.5	5.5128 Longitude: -78.349		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	7.7	30.0	20.7	
DO (mg/l)	17	N/A	4	0	5.9	10.2	7.7	
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.6	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	50	233	130	
** Fecal Coliform (/100 mls)	12	N/A	400	4	46	4,500	272	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.4	130.0	41.5	
Turbidity (NTU)	12	N/A	50	3	3.7	100.0	29.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.53	0.11	
TKN_N (mg/l)	12	2	N/A	N/A	0.20	2.27	0.87	
NO2_NO3_N (mg/l)	12	0	10	0	0.19	0.71	0.41	
TP (mg/l)	12	0	N/A	N/A	0.06	0.45	0.19	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4414000 Stream Class: WS-III NSW Swift Creek @ SR 1152 (Holly Springs Road) near Macedonia

Sub-Basin: 03020201 *Lattitude*: 35 7187 Longitude: -78.7527 County: Wake

County: Wake	Sub-Basin: 03020201			Lo	attītude: 35.7	187 <i>Long</i>	Longitude: -78.75	
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	3.0	26.3	18.1	
DO (mg/l)	17	N/A	4	0	4.1	13.4	8.0	
*** pH (SU)	17	N/A	6 to 9	0	6.2	8.2	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	69	145	102	
** Fecal Coliform (/100 mls)	12	N/A	400	3	38	4,100	179	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	13.0	7.6	
Turbidity (NTU)	12	N/A	50	0	4.5	27.0	13.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.25	0.09	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	2.34	0.84	
NO2_NO3_N (mg/l)	12	1	10	0	0.02	0.34	0.12	
TP (mg/l)	12	0	N/A	N/A	0.06	1.57	0.23	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4500000 Swift Creek @ Indian Creek former discharge location near Stream Class: CNSW

Garner, N.C.

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.6476 **Longitude:** -78.6041

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	4.0	27.5	19.1
DO (mg/l)	17	N/A	4	0	4.9	12.4	7.7
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.8	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	66	116	86
** Fecal Coliform (/100 mls)	12	N/A	400	1	4	3,600	106
Suspended Residue (mg/l)	12	0	N/A	N/A	7.2	128.0	33.6
Turbidity (NTU)	12	N/A	50	0	8.2	42.0	23.4
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.19	0.07
TKN_N (mg/l)	12	1	N/A	N/A	0.20	5.82	1.15
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.31	0.16
TP (mg/l)	12	0	N/A	N/A	0.05	8.10	0.92
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4510500 Stream Class: CNSW Swift Creek at SR 1525, Cornwallis Road near Clayton

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5999 **Longitude:** -78.5356

County: Johnston	Su	Sub-Basin: 03020201			Lattitude: 35.5999 Longitude: -78.53			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	2.8	26.9	18.3	
DO (mg/l)	17	N/A	4	0	6.0	13.1	8.5	
*** pH (SU)	17	N/A	6 to 9	0	6.7	7.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	68	354	104	
** Fecal Coliform (/100 mls)	11	N/A	400	1	52	510	110	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.5	140.0	23.3	
Turbidity (NTU)	12	N/A	50	0	5.3	30.0	15.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.31	0.06	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	1.49	0.68	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.37	0.21	
TP (mg/l)	12	1	N/A	N/A	0.02	0.15	0.08	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4511000 Stream Class: CNSW White Oak Creek @ N.C. 42 Hwy near Clayton, N.C.

Sub-Basin: 03020201 **Lattitude:** 35.6176 County: Johnston **Longitude:** -78.5281

County. Johnston	Sub-Dusin. 03020201			Luniume. 55.0170 Longitude76.52				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	4.5	28.9	20.5	
DO (mg/l)	17	N/A	4	2	2.2	11.3	7.0	
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.5	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	50	287	87	
** Fecal Coliform (/100 mls)	10	N/A	400	2	3	2,400	51	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.9	34.2	16.0	
Turbidity (NTU)	12	N/A	50	0	6.7	38.0	15.9	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	6	N/A	N/A	0.02	0.37	0.07	
TKN_N (mg/l)	12	2	N/A	N/A	0.20	1.65	0.66	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.24	0.11	
TP (mg/l)	12	1	N/A	N/A	0.02	0.23	0.12	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4520000 Swift Creek @ SR 1562 (Steel Bridge Road) near Smithfield, N.C. Stream Class: C NSW

Longitude: -78.46 County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.5515

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5515 Longitude			<i>itude:</i> -78.46
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	2.4	27.0	18.5
DO (mg/l)	16	N/A	4	0	5.3	13.3	8.4
*** pH (SU)	16	N/A	6 to 9	1	5.8	7.5	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	65	234	101
** Fecal Coliform (/100 mls)	11	N/A	400	1	48	7,600	209
Suspended Residue (mg/l)	11	4	N/A	N/A	2.5	32.2	9.4
Turbidity (NTU)	11	N/A	50	0	3.2	33.0	12.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	7	N/A	N/A	0.02	0.21	0.04
TKN_N (mg/l)	11	3	N/A	N/A	0.20	1.05	0.56
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.03	0.35	0.22
TP (mg/l)	11	1	N/A	N/A	0.02	0.23	0.10
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4580000 Swift Creek @ SR 1501 (Swift Creek Road) near the Johnston Stream Class: CNSW County Airport

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.5442 Longitude: -78.397

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	6.2	27.8	19.1
DO (mg/l)	16	N/A	4	0	6.4	10.3	8.0
*** pH (SU)	16	N/A	6 to 9	1	5.5	7.3	N/A
Conductivity (umhos/cm)	16	1	N/A	N/A	50	134	86
** Fecal Coliform (/100 mls)	12	N/A	400	3	60	6,000	249
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	160.0	29.9
Turbidity (NTU)	12	N/A	50	3	5.3	110.0	28.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.13	0.05
TKN_N (mg/l)	12	0	N/A	N/A	0.29	1.87	0.70
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.37	0.23
TP (mg/l)	12	1	N/A	N/A	0.02	0.30	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4690000 Stream Class: CNSW Middle Creek @ SR 1152 (Holly Springs Road) near Holly

Sub-Basin: 03020201 County: Wake **Lattitude:** 35.6609 **Longitude:** -78.8042

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	9	N/A	N/A	N/A	3.1	27.8	21.5
DO (mg/l)	9	N/A	4	0	5.7	11.7	7.6
*** pH (SU)	9	N/A	6 to 9	0	7.1	7.8	N/A
Conductivity (umhos/cm)	9	0	N/A	N/A	81	455	260
** Fecal Coliform (/100 mls)	4	N/A	400	2	40	3,200	345
Suspended Residue (mg/l)	5	0	N/A	N/A	2.7	9.9	5.7
Turbidity (NTU)	5	N/A	50	0	10.0	24.0	15.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	5	0	N/A	N/A	0.03	0.42	0.16
TKN_N (mg/l)	5	0	N/A	N/A	0.69	3.46	1.34
NO2_NO3_N (mg/l)	5	0	N/A	N/A	0.98	1.52	1.30
TP (mg/l)	5	1	N/A	N/A	0.02	0.45	0.29
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4868000 Stream Class: CNSW Middle Creek @ SR 1375 (Lake Wheeler Road) near Banks Longitude: -78.7279 County: Wake Sub-Rasin: 03020201 Lattitude: 35 6356

County: Wake	Sub-Basin: 03020201			Lo	attitude: 35.6	356 <i>Long</i>	Longitude: -78.72	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	16	N/A	N/A	N/A	5.0	26.7	19.0	
DO (mg/l)	16	N/A	4	0	5.7	11.7	8.2	
*** pH (SU)	16	N/A	6 to 9	0	6.9	7.6	N/A	
Conductivity (umhos/cm)	16	0	N/A	N/A	90	465	254	
** Fecal Coliform (/100 mls)	12	N/A	400	2	33	550	146	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	22.0	9.8	
Turbidity (NTU)	12	N/A	50	0	3.3	24.0	12.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	3	N/A	N/A	0.02	1.60	0.22	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	3.26	0.99	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.28	1.10	0.69	
TP (mg/l)	12	0	N/A	N/A	0.06	2.14	0.45	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J4980000 Middle Creek @ SR 1006 (Old Stage Road) near Willow Springs Stream Class: C NSW

Longitude: -78.6866 **Sub-Basin:** 03020201 *Lattitude*: 35.6091 County: Wake

County: Wake	Sub-Basin: 03020201			Lattitude: 35.6091 Long			gitude: - 78.68		
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	17	N/A	N/A	N/A	4.5	26.2	18.9		
DO (mg/l)	17	N/A	4	0	5.4	13.2	8.5		
*** pH (SU)	17	N/A	6 to 9	0	6.8	7.5	N/A		
Conductivity (umhos/cm)	17	0	N/A	N/A	95	437	238		
** Fecal Coliform (/100 mls)	12	N/A	400	3	44	1,600	167		
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	39.0	20.5		
Turbidity (NTU)	12	N/A	50	0	3.2	38.0	16.3		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.28	0.07		
TKN_N (mg/l)	12	1	N/A	N/A	0.20	2.03	0.97		
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.41	4.11	1.30		
TP (mg/l)	12	0	N/A	N/A	0.05	1.54	0.41		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	88	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	N/A	N/A					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5002000 Stream Class: CNSW Middle Creek @ SR 1517 (Old Sanders Hse) near Edmonson Longitude: -78.5756 County: Johnston Sub-Rasin: 03020201 Lattitude: 35 5626

County: Johnston	Sub-Basin: 03020201			Lattitude: 35.5626 Longitude:			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	2.7	27.4	18.6
DO (mg/l)	16	N/A	4	1	3.6	13.2	8.5
*** pH (SU)	16	N/A	6 to 9	1	3.2	7.5	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	89	347	181
** Fecal Coliform (/100 mls)	10	N/A	400	2	39	3,600	138
Suspended Residue (mg/l)	11	0	N/A	N/A	2.7	71.6	18.6
Turbidity (NTU)	11	N/A	50	1	5.6	75.0	21.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	2	N/A	N/A	0.02	0.24	0.07
TKN_N (mg/l)	11	1	N/A	N/A	0.20	1.12	0.72
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.33	1.08	0.66
TP (mg/l)	11	0	N/A	N/A	0.05	0.46	0.18
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5007000 Stream Class: NSW Middle Creek at SR 1504, Crantock Road in Johnston County

County: Johnston **Sub-Basin:** 03020201 *Lattitude*: 35.52233 Longitude: -78.46694

County. Johnston	Sub-Dusin. 03020201			Lutitude: 55.52255 Longitude: -76.46				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	5	N/A	N/A	N/A	10.6	21.8	18.3	
DO (mg/l)	5	N/A	4	0	6.1	9.8	8.3	
*** pH (SU)	5	N/A	6 to 9	1	5.8	6.9	N/A	
Conductivity (umhos/cm)	5	0	N/A	N/A	57	219	136	
** Fecal Coliform (/100 mls)	4	N/A	400	1	82	3,500	246	
Suspended Residue (mg/l)	4	0	N/A	N/A	2.6	37.8	14.9	
Turbidity (NTU)	4	N/A	50	0	5.0	40.0	18.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	4	3	N/A	N/A	0.02	0.07	0.03	
TKN_N (mg/l)	4	0	N/A	N/A	0.71	2.16	1.33	
NO2_NO3_N (mg/l)	4	0	N/A	N/A	0.11	0.54	0.31	
TP (mg/l)	4	0	N/A	N/A	0.06	0.33	0.18	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5010000 Stream Class: CNSW Middle Creek @ NC 210 near Smithfield

Sub-Basin: 03020201 *Lattitude*: 35.5075 County: Johnston **Longitude:** -78.4013

County. Johnston	Su	v-Dusin. 0	3020201	Lannuae. 55.5075 Longitude76.40				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	10	N/A	N/A	N/A	6.4	24.7	18.1	
DO (mg/l)	10	N/A	4	0	6.2	10.4	8.1	
*** pH (SU)	10	N/A	6 to 9	0	6.0	7.4	N/A	
Conductivity (umhos/cm)	10	0	N/A	N/A	67	192	127	
** Fecal Coliform (/100 mls)	8	N/A	400	2	34	3,600	157	
Suspended Residue (mg/l)	8	0	N/A	N/A	3.3	87.3	24.8	
Turbidity (NTU)	8	N/A	50	2	8.1	85.0	30.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	8	2	N/A	N/A	0.02	0.58	0.18	
TKN_N (mg/l)	8	0	N/A	N/A	0.46	4.84	1.45	
NO2_NO3_N (mg/l)	8	0	N/A	N/A	0.29	0.66	0.49	
TP (mg/l)	8	0	N/A	N/A	0.07	2.16	0.43	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5170000 Black Creek @ SR 1162 (Black Creek Road) near Four Oaks Stream Class: CNSW

Sub-Basin: 03020201 County: Johnston *Lattitude:* 35.46925 **Longitude:** -78.45681

County: Commoton	2	o Dusin. c	.0020201	2.		0020 20118	10.10
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.1	26.9	19.0
DO (mg/l)	17	N/A	4	0	5.3	10.6	7.1
*** pH (SU)	17	N/A	6 to 9	3	5.4	6.9	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	87	70
** Fecal Coliform (/100 mls)	12	N/A	400	2	40	3,800	141
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	91.0	17.1
Turbidity (NTU)	12	N/A	50	0	3.5	28.0	12.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.45	0.08
TKN_N (mg/l)	12	1	N/A	N/A	0.20	2.22	0.98
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.04	0.24	0.12
TP (mg/l)	12	1	N/A	N/A	0.02	0.16	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5250000 Neuse River @ SR 1201 (Richardson Bridge Road) near Cox Mill Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude:** 35.3741 **Longitude:** -78.1962 County: Johnston

County: Johnston	Suo-Basin: 03020201			Lattitude: 35.3741 Longitude: -78.18				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.0	30.1	21.0	
DO (mg/l)	17	N/A	4	0	5.0	9.5	7.1	
*** pH (SU)	17	N/A	6 to 9	0	6.0	7.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	66	254	130	
** Fecal Coliform (/100 mls)	12	N/A	400	3	44	2,400	191	
Suspended Residue (mg/l)	12	0	N/A	N/A	10.6	152.0	45.3	
Turbidity (NTU)	12	N/A	50	2	10.0	150.0	40.9	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	6	N/A	N/A	0.02	0.57	0.09	
TKN_N (mg/l)	12	0	N/A	N/A	0.53	1.44	0.95	
NO2_NO3_N (mg/l)	12	0	10	0	0.14	0.48	0.33	
TP (mg/l)	12	0	N/A	N/A	0.07	0.38	0.19	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390000 Stream Class: CNSW Hannah Creek @ SR 1158 (Allens Crossroads Drive) near

County: Johnston **Sub-Basin:** 03020201 **Lattitude:** 35.3868 Longitude: -78.511

	3 .7	N DI	D 4	N>Ref or	36		
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	6.1	26.1	19.1
DO (mg/l)	17	N/A	4	2	0.9	10.8	6.7
*** pH (SU)	17	N/A	6 to 9	10	4.9	7.5	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	51	201	100
** Fecal Coliform (/100 mls)	12	N/A	400	2	27	3,700	163
Suspended Residue (mg/l)	12	0	N/A	N/A	3.6	26.2	10.2
Turbidity (NTU)	12	N/A	50	0	3.0	33.0	13.8
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	1	N/A	N/A	0.02	0.38	0.12
TKN_N (mg/l)	12	1	N/A	N/A	0.20	1.88	0.80
NO2_NO3_N (mg/l)	12	2	N/A	N/A	0.02	0.47	0.27
TP (mg/l)	12	1	N/A	N/A	0.02	0.21	0.10
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5390800 Hannah Creek @ SR 1227 (Ivey Road) near Benson Stream Class: CNSW

Sub-Basin: 03020201 **Lattitude:** 35.4025 County: Johnston **Longitude:** -78.4952

County. Johnston	Sub-Dusin. 03020201			Luttitute. 55.4025 Longitute76.48				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	16	N/A	N/A	N/A	6.1	25.8	18.9	
DO (mg/l)	16	N/A	4	2	2.0	11.2	6.5	
*** pH (SU)	16	N/A	6 to 9	2	5.3	6.9	N/A	
Conductivity (umhos/cm)	16	1	N/A	N/A	50	231	127	
** Fecal Coliform (/100 mls)	11	N/A	400	0	13	320	91	
Suspended Residue (mg/l)	11	0	N/A	N/A	3.7	15.1	7.9	
Turbidity (NTU)	11	N/A	50	0	5.6	16.0	10.6	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	11	2	N/A	N/A	0.02	1.59	0.28	
TKN_N (mg/l)	11	1	N/A	N/A	0.20	2.02	1.09	
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.02	0.46	0.17	
TP (mg/l)	11	0	N/A	N/A	0.07	1.22	0.39	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5410000 Mill Creek @ SR 1200 (Richardson Bridge Road) near Cox Mill Stream Class: C NSW County: Johnsto Sub-Rasin: 03020201 I attitude: 35 342

County: Johnston	Su	b-Basin: 0	3020201	La	uttitude: 35.3	42 Long	Longitude: -78.2162	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	6.9	28.1	19.7	
DO (mg/l)	17	N/A	4	0	4.2	10.0	7.0	
*** pH (SU)	17	N/A	6 to 9	2	5.4	7.1	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	59	107	86	
** Fecal Coliform (/100 mls)	12	N/A	400	4	60	3,800	209	
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	24.0	10.0	
Turbidity (NTU)	12	N/A	50	0	3.5	24.0	9.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	4	N/A	N/A	0.02	1.08	0.13	
TKN_N (mg/l)	12	2	N/A	N/A	0.20	1.57	0.92	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.08	0.48	0.22	
TP (mg/l)	12	1	N/A	N/A	0.02	0.30	0.11	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5500000 Falling Creek @ SR 1219 (Old Grantham Road) near Grantham Stream Class: WS-IV NSW

Sub-Basin: 03020201 **Lattitude: 35.3224 Longitude:** -78.1282 County: Wayne N >Ref N N<RL Ref N< Ref Minimum Maximum * Average Temperature (C) 17 N/A N/A N/A 6.8 26.4 19.0 DO (mg/l) 17 N/A 5 2.0 9.6 5.4 4 *** pH (SU) 17 N/A 6 to 9 5 5.3 7.7 N/A Conductivity (umhos/cm) 17 0 N/A N/A 80 185 118 ** Fecal Coliform (/100 mls) 2 21 800 87 12 N/A 400 1 N/A 2.5 94.0 Suspended Residue (mg/l) 12 14.4 N/A 12 N/A 50 0 2.4 15.0 7.4 Turbidity (NTU) 0 40 0 Chlorophyll-a (ug/l) 0 NH3_N (mg/l) 12 3 N/A N/A 0.02 0.32 0.11 12 0 N/A N/A 0.53 3.22 1.16 $TKN_N (mg/l)$ NO2_NO3_N (mg/l) 0 10 0 0.11 1.00 0.37 12 12 N/A N/A 0.02 0.39 0.17 TP (mg/l)1 2 0 Cadmium (ug/l) 0 0 0 0 50 0 Chromium (ug/l) 0 0 7 0 Copper (ug/l) 0 25 0 Nickel (ug/l) 0 0 25 Lead (ug/l) 0 0 0 50 0 Zinc (ug/l) ****Aluminum (ug/l) 0 0 87 0 0 0 1,000 0 Iron (ug/l) 0 200 0 Manganese (ug/l) 0 Arsenic (ug/l) 0 0 10 0

Notes: * Results below the laboratory reporting limit (<RL) are included in the calculation as if they were at the reporting level.

** The Fecal Coliform average is a geometric mean.

0.012

N/A

Mercury (ug/l)

0

0

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5630000 Little River @ SR 2320, Riley Road near Zebulon Stream Class: HQW NSW

County: Wake **Sub-Basin:** 03020201 **Lattitude:** 35.8375 Longitude: -78.3599

•						8			
				N >Ref	Ref				
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average		
Temperature (C)	8	N/A	N/A	N/A	10.1	24.7	17.4		
DO (mg/l)	8	N/A	4	0	4.6	11.7	7.5		
*** pH (SU)	8	N/A	6 to 9	1	5.5	7.5	N/A		
Conductivity (umhos/cm)	8	1	N/A	N/A	50	114	78		
** Fecal Coliform (/100 mls)	5	N/A	400	0	40	340	91		
Suspended Residue (mg/l)	5	1	N/A	N/A	2.5	4.9	3.5		
Turbidity (NTU)	5	N/A	50	0	2.8	11.0	5.8		
Chlorophyll-a (ug/l)	0	0	40	0					
NH3_N (mg/l)	5	3	N/A	N/A	0.02	0.07	0.03		
TKN_N (mg/l)	5	1	N/A	N/A	0.20	2.12	0.83		
NO2_NO3_N (mg/l)	5	0	10	0	0.04	0.20	0.09		
TP (mg/l)	5	2	N/A	N/A	0.02	0.11	0.05		
Cadmium (ug/l)	0	0	2	0					
Chromium (ug/l)	0	0	50	0					
Copper (ug/l)	0	0	7	0					
Nickel (ug/l)	0	0	25	0					
Lead (ug/l)	0	0	25	0					
Zinc (ug/l)	0	0	50	0					
****Aluminum (ug/l)	0	0	87	0					
Iron (ug/l)	0	0	1,000	0					
Manganese (ug/l)	0	0	200	0					
Arsenic (ug/l)	0	0	10	0					
Mercury (ug/l)	0	0	0.012	N/A					

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5685000 Stream Class: WS-V NSW Little River at Weaver Road near Bagley

Lattitude: 35.5791 County: Johnston **Sub-Basin:** 03020201 **Longitude:** -78.1723

County. Johnston	Su	v-Dusin.	J302020 I	Latitude: 55.5791 Longitude: -76.1				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.3	27.7	18.8	
DO (mg/l)	17	N/A	4	0	5.5	10.6	7.7	
*** pH (SU)	17	N/A	6 to 9	2	5.7	7.5	N/A	
Conductivity (umhos/cm)	17	3	N/A	N/A	50	99	73	
** Fecal Coliform (/100 mls)	12	N/A	400	2	44	618	121	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	22.0	9.0	
Turbidity (NTU)	12	N/A	50	0	5.3	40.0	14.5	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.40	0.10	
TKN_N (mg/l)	12	0	N/A	N/A	0.50	1.84	0.93	
NO2_NO3_N (mg/l)	12	0	10	0	0.07	0.37	0.21	
TP (mg/l)	12	0	N/A	N/A	0.06	0.21	0.13	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5750000 Little River at SR 2339 (Bagley Road) near Lowell Mill Stream Class: WS-V NSW

Sub-Basin: 03020201 *Lattitude*: 35.5613 County: Johnston **Longitude:** -78.1594

Country: Conniction	200	Dusiii.	.0020201	Buttillact 00.0010 Bongtillact 10.10				
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	8.4	27.6	18.8	
DO (mg/l)	17	N/A	4	0	4.9	11.3	7.8	
*** pH (SU)	17	N/A	6 to 9	3	5.1	9.7	N/A	
Conductivity (umhos/cm)	17	3	N/A	N/A	50	129	79	
** Fecal Coliform (/100 mls)	12	N/A	400	3	56	773	170	
Suspended Residue (mg/l)	12	3	N/A	N/A	2.5	26.0	9.6	
Turbidity (NTU)	12	N/A	50	0	5.8	45.0	15.2	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	6	N/A	N/A	0.02	0.42	0.07	
TKN_N (mg/l)	12	0	N/A	N/A	0.58	1.64	0.94	
NO2_NO3_N (mg/l)	12	0	10	0	0.08	0.32	0.22	
TP (mg/l)	12	0	N/A	N/A	0.06	0.31	0.14	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5790000 Buffalo Creek @ SR 2358 (Lake Glad Road) near Webdell, N.C. Stream Class: C NSW

Longitude: -78.7697 County: Wake Sub-Rasin: 03020201 Lattitude: 35 7697

County: Wake	Sub-Basin: 03020201			Lattitude: 35.7697 Longitude:			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	9.5	27.2	19.1
DO (mg/l)	16	N/A	4	0	4.1	9.5	7.5
*** pH (SU)	16	N/A	6 to 9	1	5.7	7.8	N/A
Conductivity (umhos/cm)	16	1	N/A	N/A	50	177	85
** Fecal Coliform (/100 mls)	10	N/A	400	1	39	2,100	197
Suspended Residue (mg/l)	11	1	N/A	N/A	2.5	19.0	7.1
Turbidity (NTU)	11	N/A	50	0	5.5	24.0	10.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	4	N/A	N/A	0.02	1.75	0.23
TKN_N (mg/l)	11	0	N/A	N/A	0.49	1.79	1.18
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.04	0.57	0.18
TP (mg/l)	11	1	N/A	N/A	0.02	0.26	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J5930000 Little River @ US 581 near Cherry Hospital Stream Class: CNSW

County: Wayne **Sub-Basin:** 03020201 *Lattitude*: 35.393 **Longitude:** -78.0258

County: Wayne	Suo-Basin: 03020201			Lattitude: 35.393 Longitude: -78			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	7.4	29.6	20.6
DO (mg/l)	17	N/A	4	0	5.7	10.3	7.5
*** pH (SU)	17	N/A	6 to 9	3	5.5	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	52	190	100
** Fecal Coliform (/100 mls)	12	N/A	400	3	9	5,600	165
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	69.0	15.7
Turbidity (NTU)	12	N/A	50	1	2.4	60.0	16.7
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.14	0.05
TKN_N (mg/l)	12	0	N/A	N/A	0.40	1.85	0.83
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.13	0.92	0.45
TP (mg/l)	12	1	N/A	N/A	0.02	0.31	0.15
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6010950 Stream Class: CNSW Walnut Creek @ SR 1730 (Saint Johns Church Road) near

Walnut Creek

County: Wayne **Sub-Basin:** 03020202 **Lattitude:** 35.2817 **Longitude:** -77.8686

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	12.5	28.8	20.3
DO (mg/l)	17	N/A	4	0	4.5	9.3	6.6
*** pH (SU)	17	N/A	6 to 9	4	5.4	7.6	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	75	141	98
** Fecal Coliform (/100 mls)	12	N/A	400	1	2	845	30
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	38.2	10.5
Turbidity (NTU)	12	N/A	50	0	2.1	10.0	5.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.81	0.18
TKN_N (mg/l)	12	1	N/A	N/A	0.40	6.39	1.68
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.17	1.90	0.98
TP (mg/l)	12	0	N/A	N/A	0.03	0.62	0.13
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6024000 Neuse River @ SR 1731 (Piney Grove Road) near Seven Springs Stream Class: C NSW

Lattitude: 35 229 Longitude: -77.846 County: Wayne Sub-Rasin: 03020202

County: Wayne	Sub-Basin: 03020202			L	attitude: 35.2	229 <i>Long</i>	Longitude: -77.84	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	9.1	29.6	21.2	
DO (mg/l)	17	N/A	4	0	4.7	11.2	7.2	
*** pH (SU)	17	N/A	6 to 9	0	6.3	8.4	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	68	227	129	
** Fecal Coliform (/100 mls)	12	N/A	400	1	13	3,300	61	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.7	900.0	99.9	
Turbidity (NTU)	12	N/A	50	2	5.2	650.0	71.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.56	0.09	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	9.97	1.70	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.21	0.80	0.43	
TP (mg/l)	12	0	N/A	N/A	0.07	1.03	0.29	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044400 Stream Class: C Sw NSW Bear Creek at SR 1603, Washington Street near LaGrange

Sub-Basin: 03020202 **Lattitude:** 35.3137 County: Lenoir **Longitude:** -77.8153

County. Lenon	5110-Dusin. 03020202			Luminue. 55.5157 Longmune17			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	13.0	30.1	19.6
DO (mg/l)	17	N/A	4	0	5.0	9.7	7.4
*** pH (SU)	17	N/A	6 to 9	2	5.8	8.1	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	87	147	128
** Fecal Coliform (/100 mls)	12	N/A	400	1	46	7,000	132
Suspended Residue (mg/l)	12	0	N/A	N/A	3.4	56.6	17.3
Turbidity (NTU)	12	N/A	50	0	4.5	45.0	10.1
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.87	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.45	1.39	0.91
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.29	3.14	2.27
TP (mg/l)	12	0	N/A	N/A	0.07	0.46	0.17
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6044500 Bear Creek @ SR 1311 (Bear Creek Road) near Kinston Stream Class: WS-IV Sw N

Sub-Basin: 03020202 **Lattitude:** 35.2489 County: Lenoir **Longitude:** -77.7843

Country: Lonon	200	Sub Busine Godesed Building						
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	13.2	28.8	19.6	
DO (mg/l)	17	N/A	4	0	5.5	9.4	7.7	
*** pH (SU)	17	N/A	6 to 9	3	5.8	8.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	98	136	119	
** Fecal Coliform (/100 mls)	12	N/A	400	1	33	6,000	84	
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	60.8	12.0	
Turbidity (NTU)	12	N/A	50	0	3.3	40.0	8.7	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.28	0.11	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	2.05	1.06	
NO2_NO3_N (mg/l)	12	0	10	0	1.39	2.72	2.08	
TP (mg/l)	12	0	N/A	N/A	0.05	4.13	0.57	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	25	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	200	0				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6055000 Mosley Creek @ SR 1327 (Willey Measley Road) near LaGrange Stream Class: C Sw NSW

Sub-Basin: 03020202 **Lattitude:** 35.3119 **Longitude:** -77.7313 County: Lenoir

County. Lenon	Su	v-Dusin.	33020202	Luttitute. 55.5119 Longitute11.15				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	13.1	30.2	19.3	
DO (mg/l)	17	N/A	4	0	5.9	9.5	7.7	
*** pH (SU)	17	N/A	6 to 9	1	5.9	8.3	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	73	141	114	
** Fecal Coliform (/100 mls)	12	N/A	400	10	220	5,500	654	
Suspended Residue (mg/l)	12	0	N/A	N/A	2.6	100.0	16.0	
Turbidity (NTU)	12	N/A	50	2	2.6	95.0	18.8	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.31	0.11	
TKN_N (mg/l)	12	0	N/A	N/A	0.52	12.16	2.54	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.73	4.16	2.59	
TP (mg/l)	12	0	N/A	N/A	0.09	2.77	0.51	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6150000 Stream Class: CNSW Neuse River @ NC 11 Bypass at Kinston

Sub-Basin: 03020202 **Lattitude:** 35.2587 County: Lenoir **Longitude:** -77.5835

County. Lenon	Sub-Dusin. 03020202			L	.501 Long	<i>inuie.</i> -11.50		
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	9.2	31.6	21.3	
DO (mg/l)	17	N/A	4	0	4.0	10.8	6.9	
*** pH (SU)	17	N/A	6 to 9	0	6.3	9.0	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	70	219	134	
** Fecal Coliform (/100 mls)	12	N/A	400	2	26	845	92	
Suspended Residue (mg/l)	12	0	N/A	N/A	5.4	120.0	41.9	
Turbidity (NTU)	12	N/A	50	1	7.8	55.0	21.0	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.64	0.09	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	1.59	0.76	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.23	0.71	0.47	
TP (mg/l)	12	1	N/A	N/A	0.02	0.36	0.16	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6250000 Neuse River @ NC 55 near Graingers Stream Class: CNSW

Sub-Basin: 03020202 **Lattitude:** 35.2957 **Longitude:** -77.4962 County: Lenoir

Country: Lonon	200	o Dusiii. o	OOLOLOL	2.		Don's	77.10
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	8.7	28.8	21.0
DO (mg/l)	16	N/A	4	0	5.5	9.3	7.4
*** pH (SU)	16	N/A	6 to 9	2	6.2	11.4	N/A
Conductivity (umhos/cm)	16	0	N/A	N/A	62	218	134
** Fecal Coliform (/100 mls)	11	N/A	400	1	11	3,500	75
Suspended Residue (mg/l)	11	0	N/A	N/A	5.6	52.3	19.8
Turbidity (NTU)	11	N/A	50	0	7.8	50.0	20.6
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	4	N/A	N/A	0.02	0.24	0.07
TKN_N (mg/l)	11	1	N/A	N/A	0.20	1.36	0.79
NO2_NO3_N (mg/l)	11	0	N/A	N/A	0.26	0.89	0.48
TP (mg/l)	11	1	N/A	N/A	0.02	1.21	0.21
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6410000 Little Creek @ NC 97 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 **Lattitude:** 35.8279 **Longitude:** -78.3025

County: Wallo	~"	o Dustit. o	0020200	2.		Zio Zong	10.00
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.4	24.9	17.8
DO (mg/l)	17	N/A	4	0	4.5	9.8	7.2
*** pH (SU)	17	N/A	6 to 9	1	5.8	7.3	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	45	120	98
** Fecal Coliform (/100 mls)	10	N/A	400	4	210	946	428
Suspended Residue (mg/l)	12	0	N/A	N/A	2.7	34.5	9.7
Turbidity (NTU)	12	N/A	50	0	4.4	32.0	10.0
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.16	0.06
TKN_N (mg/l)	12	2	N/A	N/A	0.20	1.49	0.78
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.24	0.52	0.38
TP (mg/l)	12	2	N/A	N/A	0.02	0.17	0.09
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6450000 Little Creek @ NC 39 near Zebulon Stream Class: CNSW

County: Wake **Sub-Basin:** 03020203 *Lattitude*: 35.8125 **Longitude:** -78.2681

					8	
			N >Ref or			
N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
17	N/A	N/A	N/A	10.7	26.8	19.6
17	N/A	4	0	6.3	10.0	8.1
17	N/A	6 to 9	0	6.5	7.6	N/A
17	0	N/A	N/A	94	519	288
11	N/A	400	2	52	560	189
12	2	N/A	N/A	2.5	34.0	11.6
12	N/A	50	3	3.2	370.0	47.9
0	0	40	0			
12	6	N/A	N/A	0.02	0.11	0.04
12	0	N/A	N/A	0.33	3.93	1.27
12	0	N/A	N/A	0.37	1.10	0.63
12	1	N/A	N/A	0.02	1.56	0.31
0	0	2	0			
0	0	50	0			
0	0	7	0			
0	0	88	0			
0	0	25	0			
0	0	50	0			
0	0	87	0			
0	0	1,000	0			
0	0	N/A	N/A			
0	0	10	0			
0	0	0.012	N/A			
	17 17 17 17 11 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0	17 N/A 17 N/A 17 N/A 17 O 11 N/A 12 2 12 N/A 0 O 12 6 12 O 12 1 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O	17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 0 N/A 11 N/A 400 12 2 N/A 12 N/A 50 0 0 40 12 6 N/A 12 0 N/A 12 0 N/A 12 1 N/A 0 0 2 0 0 50 0 0 7 0 0 88 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A	N N< <rl< th=""> Ref N<< Ref 17 N/A N/A N/A 17 N/A 4 0 17 N/A 6 to 9 0 17 0 N/A N/A 11 N/A 400 2 12 2 N/A N/A 12 N/A 50 3 0 0 40 0 12 6 N/A N/A 12 0 N/A N/A 12 0 N/A N/A 12 1 N/A N/A 12 1 N/A N/A 12 1 N/A N/A 0 0 2 0 0 0 50 0 0 0 88 0 0 0 50 0 0 0 50 0 0 0</rl<>	N N< <rl< th=""> Ref N N Minimum 17 N/A N/A N/A 10.7 17 N/A 4 0 6.3 17 N/A 6 to 9 0 6.5 17 0 N/A N/A 94 11 N/A 400 2 52 12 2 N/A N/A 2.5 12 N/A 50 3 3.2 0 0 40 0 0 12 6 N/A N/A 0.02 12 0 N/A N/A 0.33 12 1 N/A N/A 0.37 12 1 N/A N/A 0.02 0 0 5 0 0 0 0 0 0 0 8 0 0 0 5 0 0 0 0</rl<>	N N <rl< th=""> Ref or N<ref n<re<="" n<ref="" or="" td=""></ref></rl<>

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6500000 Moccasin Creek @ SR 1131 (Antioch Church Road) near Conner Stream Class: C NSW

Longitude: -78.1895 **Sub-Basin:** 03020203 *Lattitude*: 35.7301 County: Wilson

County: Wilson	Sub-Basin: 03020203			Lattitude: 35.7301 Longitude: -78.			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	9.8	26.0	18.8
DO (mg/l)	17	N/A	4	1	3.3	11.2	7.4
*** pH (SU)	17	N/A	6 to 9	0	6.5	7.3	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	104	86
** Fecal Coliform (/100 mls)	12	N/A	400	2	68	5,300	218
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	252.0	29.1
Turbidity (NTU)	12	N/A	50	0	6.0	39.0	14.9
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.17	0.07
TKN_N (mg/l)	12	0	N/A	N/A	0.25	1.98	0.93
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.05	0.49	0.17
TP (mg/l)	12	0	N/A	N/A	0.04	0.27	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6680000

County: Nash	Sub-Basin: 03020203			La	attitude: 35.7	519 <i>Long</i>	Longitude: -78.1597	
				N >Ref				
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	9.2	26.1	19.2	
DO (mg/l)	17	N/A	4	2	2.5	8.2	6.1	
*** pH (SU)	17	N/A	6 to 9	1	5.7	7.1	N/A	
Conductivity (umhos/cm)	17	1	N/A	N/A	46	94	70	
** Fecal Coliform (/100 mls)	12	N/A	400	1	38	1,000	97	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.4	130.0	16.2	
Turbidity (NTU)	12	N/A	50	0	9.1	34.0	14.4	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.24	0.08	
TKN_N (mg/l)	12	0	N/A	N/A	0.41	4.58	1.24	
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.21	0.13	
TP (mg/l)	12	1	N/A	N/A	0.02	6.63	0.63	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6765000 Stream Class: C Sw NSW Contentnea Creek at Willow Springs drive near Dixie

Sub-Basin: 03020203 **Lattitude:** 35.6838 County: Wilson Longitude: -77.941

County. Wilson	Sub-Busin. 03020203			Lannuae. 55.0656 Longitude17.94				
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	17	N/A	N/A	N/A	10.1	30.8	21.9	
DO (mg/l)	17	N/A	4	0	5.8	10.3	7.8	
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.5	N/A	
Conductivity (umhos/cm)	17	0	N/A	N/A	50	85	73	
** Fecal Coliform (/100 mls)	12	N/A	400	2	7	1,300	57	
Suspended Residue (mg/l)	12	0	N/A	N/A	3.5	76.5	21.9	
Turbidity (NTU)	12	N/A	50	0	4.5	20.0	9.1	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	12	4	N/A	N/A	0.02	0.39	0.08	
TKN_N (mg/l)	12	1	N/A	N/A	0.20	2.35	1.05	
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.03	0.40	0.18	
TP (mg/l)	12	2	N/A	N/A	0.02	0.17	0.08	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J6890000 Stream Class: C Sw NSW Contentnea Creek @ SR 1622 (Evansdale Road) near Wilson **Longitude:** -77.8902 **Sub-Basin:** 03020203 *Lattitude*: 35 6429 County: Wilson

County: Wilson	Sub-Basin: 03020203			L	attitude: 35.6	6429 <i>Long</i>	Longitude: -77.890	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average	
Temperature (C)	16	N/A	N/A	N/A	11.5	30.7	21.3	
DO (mg/l)	16	N/A	4	0	4.9	9.4	7.4	
*** pH (SU)	16	N/A	6 to 9	0	6.4	7.2	N/A	
Conductivity (umhos/cm)	16	0	N/A	N/A	55	263	135	
** Fecal Coliform (/100 mls)	10	N/A	400	0	11	240	52	
Suspended Residue (mg/l)	11	0	N/A	N/A	2.6	78.3	13.3	
Turbidity (NTU)	11	N/A	50	1	4.1	70.0	13.9	
Chlorophyll-a (ug/l)	0	0	40	0				
NH3_N (mg/l)	11	2	N/A	N/A	0.02	0.35	0.11	
TKN_N (mg/l)	11	0	N/A	N/A	0.57	4.09	1.26	
NO2_NO3_N (mg/l)	11	1	N/A	N/A	0.02	0.92	0.51	
TP (mg/l)	11	0	N/A	N/A	0.04	0.27	0.10	
Cadmium (ug/l)	0	0	2	0				
Chromium (ug/l)	0	0	50	0				
Copper (ug/l)	0	0	7	0				
Nickel (ug/l)	0	0	88	0				
Lead (ug/l)	0	0	25	0				
Zinc (ug/l)	0	0	50	0				
****Aluminum (ug/l)	0	0	87	0				
Iron (ug/l)	0	0	1,000	0				
Manganese (ug/l)	0	0	N/A	N/A				
Arsenic (ug/l)	0	0	10	0				
Mercury (ug/l)	0	0	0.012	N/A				

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7210000 Stream Class: C Sw NSW Contentnea Creek @ NC 58 near Stantonsburg

County: Wilson **Sub-Basin:** 03020203 **Lattitude:** 35.5861 **Longitude:** -77.8111

County: Wilden	~~	o Dusin. c	,0020200	2.		Don's	11.01
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	11.2	30.6	21.7
DO (mg/l)	17	N/A	4	0	4.7	9.1	7.2
*** pH (SU)	17	N/A	6 to 9	0	6.4	7.6	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	63	275	130
** Fecal Coliform (/100 mls)	11	N/A	400	2	42	879	99
Suspended Residue (mg/l)	12	2	N/A	N/A	2.5	42.0	9.1
Turbidity (NTU)	12	N/A	50	0	4.3	13.0	8.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.13	0.06
TKN_N (mg/l)	12	0	N/A	N/A	0.55	8.20	1.59
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.13	0.62	0.35
TP (mg/l)	12	1	N/A	N/A	0.02	0.26	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7240000

County: Wilson **Sub-Basin:** 03020203 **Lattitude:** 35.5976 **Longitude:** -77.7947

County: Wilson	Sub-Busin: 03020203			Lattitude: 35.5976 Longitude:			
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	10.6	28.0	19.7
DO (mg/l)	17	N/A	4	1	3.3	9.2	7.0
*** pH (SU)	17	N/A	6 to 9	0	6.1	7.3	N/A
Conductivity (umhos/cm)	17	1	N/A	N/A	50	207	99
** Fecal Coliform (/100 mls)	12	N/A	400	0	39	280	82
Suspended Residue (mg/l)	12	5	N/A	N/A	2.5	36.0	7.4
Turbidity (NTU)	12	N/A	50	0	5.2	40.0	10.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	5	N/A	N/A	0.02	0.17	0.07
TKN_N (mg/l)	12	1	N/A	N/A	0.20	23.77	2.80
NO2_NO3_N (mg/l)	12	1	N/A	N/A	0.02	0.42	0.20
TP (mg/l)	12	1	N/A	N/A	0.02	0.28	0.12
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7325000 Nahunta Swamp @ NC 58 near Contentnea Stream Class: C Sw NSW

Sub-Basin: 03020203 **Lattitude:** 35.5081 County: Greene **Longitude:** -77.7455

County: Grooms	~"	o Busine c	0020200	2.		20118	
	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	10.5	27.5	19.6
DO (mg/l)	17	N/A	4	0	4.3	10.1	7.6
*** pH (SU)	17	N/A	6 to 9	1	5.9	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	71	133	108
** Fecal Coliform (/100 mls)	12	N/A	400	2	42	2,300	205
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	120.0	14.1
Turbidity (NTU)	12	N/A	50	1	4.2	80.0	13.3
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.18	0.08
TKN_N (mg/l)	12	1	N/A	N/A	0.20	3.26	1.25
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.32	2.00	1.39
TP (mg/l)	12	1	N/A	N/A	0.02	0.54	0.14
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7330000 Stream Class: C Sw NSW Contentnea Creek @ US 13 near Snow Hill

Sub-Basin: 03020203 *Lattitude*: 35.4585 County: Greene **Longitude:** -77.6753

					8	
			N>Ref or			
N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
17	N/A	N/A	N/A	10.9	30.4	21.5
17	N/A	4	0	4.7	11.0	7.4
17	N/A	6 to 9	0	6.1	7.4	N/A
17	0	N/A	N/A	68	169	116
12	N/A	400	1	21	460	54
12	3	N/A	N/A	2.5	9.4	5.4
12	N/A	50	0	5.1	13.0	7.5
0	0	40	0			
12	3	N/A	N/A	0.02	0.17	0.07
12	1	N/A	N/A	0.20	2.00	0.88
12	0	N/A	N/A	0.27	0.97	0.58
12	1	N/A	N/A	0.02	0.28	0.11
0	0	2	0			
0	0	50	0			
0	0	7	0			
0	0	88	0			
0	0	25	0			
0	0	50	0			
0	0	87	0			
0	0	1,000	0			
0	0	N/A	N/A			
0	0	10	0			
0	0	0.012	N/A			
	17 17 17 17 12 12 12 12 12 12 12 0 0 0 0 0 0 0 0 0	17 N/A 17 N/A 17 N/A 17 O 12 N/A 12 3 12 N/A 0 O 12 3 12 1 12 0 12 1 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O	17 N/A N/A 17 N/A 4 17 N/A 6 to 9 17 0 N/A 12 N/A 400 12 3 N/A 12 N/A 50 0 0 40 12 3 N/A 12 1 N/A 12 1 N/A 12 1 N/A 0 0 2 0 0 50 0 0 7 0 0 88 0 0 50 0 0 87 0 0 1,000 0 0 N/A 0 0 N/A 0 0 N/A	N N< Ref N< Ref 17 N/A N/A N/A 17 N/A 4 0 17 N/A 6 to 9 0 17 0 N/A N/A 12 N/A 400 1 12 3 N/A N/A 12 N/A 50 0 0 0 40 0 12 3 N/A N/A 12 1 N/A N/A 0 0 2 0 0 0 50 0 0 0 88 0 0 0 50 0 0 0<	N N <rl< th=""> Ref N N Minimum 17 N/A N/A N/A 10.9 17 N/A 4 0 4.7 17 N/A 6 to 9 0 6.1 17 0 N/A N/A 68 12 N/A 400 1 21 12 3 N/A N/A 2.5 12 N/A 50 0 5.1 0 0 40 0 0 12 3 N/A N/A 0.02 12 1 N/A N/A 0.20 12 1 N/A N/A 0.27 12 1 N/A N/A 0.02 0 0 2 0 0 0 0 5 0 0 0 0 5 0 0 0 0 5 0 0</rl<>	N N <rl< th=""> Ref or N<ref n<re<="" n<ref="" or="" td=""></ref></rl<>

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7690000 Stream Class: C Sw NSW Little Contentnea Creek @ SR 1218 (Chinquapin Road) near

County: Pitt **Sub-Basin:** 03020203 **Lattitude:** 35.5881 **Longitude:** -77.5416

	N	N <rl< th=""><th>Ref</th><th>N >Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N >Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	16	N/A	N/A	N/A	10.9	27.1	19.7
	16	N/A	4	2	2.4	9.3	6.3
DO (mg/l)		N/A	6 to 9	0			0.5 N/A
*** pH (SU)	16				6.0	7.4	
Conductivity (umhos/cm)	16	0	N/A	N/A	58	461	162
** Fecal Coliform (/100 mls)	12	N/A	400	4	36	4,400	263
Suspended Residue (mg/l)	12	0	N/A	N/A	4.0	132.0	17.6
Turbidity (NTU)	12	N/A	50	0	5.7	35.0	13.2
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	11	0	N/A	N/A	0.04	0.94	0.34
TKN_N (mg/l)	11	0	N/A	N/A	0.65	4.46	1.68
NO2_NO3_N (mg/l)	11	1	N/A	N/A	0.02	0.61	0.40
TP (mg/l)	11	0	N/A	N/A	0.09	0.74	0.35
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7740000 Little Contentnea Creek @ SR 1110 (HWY 903) near Scuffleton Stream Class: C Sw NSW

Sub-Basin: 03020203 **Lattitude:** 35.4567 **Longitude:** -77.4854 County: Pitt

County. Fill	Sub-Busin. 03020203			Lumane. 55.4507 Longmane.			
	N	N <rl< th=""><th>Ref</th><th>N>Ref or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N>Ref or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	11.6	25.8	20.2
DO (mg/l)	17	N/A	4	2	2.5	8.5	6.2
*** pH (SU)	17	N/A	6 to 9	0	6.3	7.4	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	58	260	158
** Fecal Coliform (/100 mls)	12	N/A	400	2	56	2,600	155
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	355.0	46.5
Turbidity (NTU)	12	N/A	50	0	5.1	50.0	10.7
Chlorophyll-a (ug/l)	0	0	40	0			
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.20	0.07
TKN_N (mg/l)	12	1	N/A	N/A	0.20	1.82	1.05
NO2_NO3_N (mg/l)	12	0	N/A	N/A	0.02	0.93	0.50
TP (mg/l)	12	0	N/A	N/A	0.06	1.11	0.32
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J7850000 Neuse River @ SR 1470 (Maple Cypress Road) at the boat ramp Stream Class: C Sw NSW dock upstream of the bridge.

County: Craven **Sub-Basin:** 03020202 *Lattitude*: 35.31368 *Longitude*: -77.30287

				N >Ref			
	N	N <rl< th=""><th>Ref</th><th>or N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	or N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	8.3	31.3	21.0
DO (mg/l)	17	N/A	4	0	4.0	11.4	7.2
*** pH (SU)	17	N/A	6 to 9	1	6.1	9.7	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	68	220	136
** Fecal Coliform (/100 mls)	12	N/A	400	1	7	1,800	45
Suspended Residue (mg/l)	12	0	N/A	N/A	4.0	58.7	20.0
Turbidity (NTU)	12	N/A	50	0	5.6	29.0	14.0
Chlorophyll-a (ug/l)	8	0	40	0	1.26	15.00	6.75
NH3_N (mg/l)	12	2	N/A	N/A	0.02	0.80	0.14
TKN_N (mg/l)	12	0	N/A	N/A	0.20	1.38	0.87
$NO2_NO3_N$ (mg/l)	12	0	N/A	N/A	0.24	0.90	0.50
TP (mg/l)	12	0	N/A	N/A	0.06	0.58	0.18
Cadmium (ug/l)	0	0	2	0			
Chromium (ug/l)	0	0	50	0			
Copper (ug/l)	0	0	7	0			
Nickel (ug/l)	0	0	88	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	50	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	N/A	N/A			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.012	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.

Station J8870000 Stream Class: SB Sw NSW Trent River @ the Alfred Cunningham Drawbridge on E. Front

Street, New Bern

Lattitude: 35.10159 County: Craven **Sub-Basin:** 03020204 **Longitude:** -77.03708

				N >Ref or			
	N	N <rl< th=""><th>Ref</th><th>N< Ref</th><th>Minimum</th><th>Maximum</th><th>* Average</th></rl<>	Ref	N< Ref	Minimum	Maximum	* Average
Temperature (C)	17	N/A	N/A	N/A	9.3	31.2	21.3
DO (mg/l)	17	N/A	5	3	3.3	9.6	6.5
*** pH (SU)	17	N/A	6.8 to 8.5	1	6.7	7.9	N/A
Conductivity (umhos/cm)	17	0	N/A	N/A	547	18,944	6,213
** Fecal Coliform (/100 mls)	12	N/A	400	0	19	159	53
Suspended Residue (mg/l)	12	1	N/A	N/A	2.5	150.0	17.4
Turbidity (NTU)	12	N/A	25	0	2.5	8.1	5.0
Chlorophyll-a (ug/l)	8	0	40	1	2.00	46.00	14.57
NH3_N (mg/l)	12	3	N/A	N/A	0.02	0.39	0.09
TKN_N (mg/l)	12	0	N/A	N/A	0.49	1.85	0.99
NO2_NO3_N (mg/l)	12	0	10	0	0.08	0.40	0.25
TP (mg/l)	12	0	N/A	N/A	0.05	1.00	0.23
Cadmium (ug/l)	0	0	5	0			
Chromium (ug/l)	0	0	20	0			
Copper (ug/l)	0	0	3	0			
Nickel (ug/l)	0	0	8	0			
Lead (ug/l)	0	0	25	0			
Zinc (ug/l)	0	0	86	0			
****Aluminum (ug/l)	0	0	87	0			
Iron (ug/l)	0	0	1,000	0			
Manganese (ug/l)	0	0	200	0			
Arsenic (ug/l)	0	0	10	0			
Mercury (ug/l)	0	0	0.025	N/A			

^{***} Tidal salt waters classified as swamp waters may have a pH as low as 4.3 if it is the result of natural conditions

^{****} The aluminum reference level (Ref) is from the EPA's national recommended water quality criteria.